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ABSTRACT

A surface mine optimizes its profits by maximizing the net present value (NPV)

of minerals extracted from the orebody. This is accomplished by creating a produc-

tion schedule that defines when each section, or block, of ore is removed. Doing so

efficiently requires adherence to geospatial and operational constraints. A common

exact method for determining this block extraction sequence is formulating the prob-

lem as a mixed integer program where each block is a time-indexed binary variable

representing when (and if) a given block is removed from the orebody. We describe

the complexities involved in such a formulation and suggest methodologies to expe-

dite the solution times for instances of this block sequencing problem. We adopt

three approaches to make the model more tractable: 1) we apply deterministic vari-

able reduction techniques to eliminate blocks from consideration in the model; 2) we

produce cuts that strengthen the model’s formulation; and 3) we employ Lagrangian

relaxation techniques. These three techniques allow us to determine an optimal (or

near-optimal) solution more quickly than solving the monolith (original problem).

Applying our techniques to data sets ranging from 100 to 10,000 blocks reduces solu-

tion times by over 90%, on average.
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Chapter 1

INTRODUCTION

Mining is a complex, expensive, but potentially lucrative business. Today’s open

pit mines are huge projects that make extensive use of automated equipment and

employ the latest technology to ensure a profitable enterprise. The tight profit mar-

gins under which these mines often operate and the finicky nature of mineral markets

require efficient ore removal schemes to ensure that the mine makes money.

Scheduling the operations at an open pit mine involves determining what material

to remove at which time. The material in the mine is divided into rectangular blocks

whose size is based on the operation’s production and processing capacities. To

maximize the net present value of all the mineral in the orebody, a mine engineer

must create an optimal extraction schedule. The extraction schedule must obey all

geospatial sloping rules so the resulting hole does not cave in on itself, as well as

operational constraints that limit the amount of material produced at the site and

the amount of material processed at the mill. The ensuing schedule represents the

optimal block extraction sequence, and can potentially produce millions of dollars or

more in revenue compared to ad hoc extraction schemes. Determining this optimal

extraction policy, however, is a computationally intensive undertaking. Attempts to

reduce solve times via heuristics often fail to give an optimal solution.

Although quick to provide a solution, heuristics have no guarantee of optimality

and may not give any indication of the correctness of the solution. On the other

hand, spending countless hours or even days to derive the optimal solution is costly

and cumbersome as it gives mine planners little ability to quickly react to changing

conditions at the mine or in the marketplace by using the model. We endeavor
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to arrive at an optimal solution by using deterministic data reduction techniques

to decrease the number of variables in the problem and by using stronger problem

formulations that tighten the feasible region via cuts. Also, we employ Lagrangian

relaxation techniques in conjunction with heuristics to generate feasible solutions as

a means of expediting solution times. Thus, we provide the best of both worlds,

optimal solutions in reasonable solve times. Our solution methodologies help mine

engineers prudently schedule operations at the mine, allowing for the efficient removal

of valuable material from the orebody. Our fast solve times allow mine engineers to

update their schedules more frequently than by using other, more time consuming

scheduling methods, creating cost-effective schedules more quickly than is currently

being done.

1.1 Open Pit Mining

Open pit mining involves extracting material from the Earth’s surface down-

wards; hence, open pit mines are often referred to as surface mines. Open pit mines

result in crater-like holes in the ground once all the valuable mineral is removed from

the orebody.

Orebodies in open pit mines are modeled using a collection of blocks, commonly

three-dimensional rectangles. Each block is characterized by a weight and an amount

of valuable mineral. The ratio of valuable mineral to total block weight is used to

determine whether the block is classified as ore or waste, which in turn dictates the

profit that a block produces. The basic decision a mine planner makes is when, if at

all, to remove each block in the orebody of interest. Maximizing the net present value

(NPV) of all processed ore at the site ensures that the mine’s operations process the

most valuable material from the orebody. An efficient extraction schedule coupled

with other sound business practices help ensure that the mine’s NPV is maximized.

Kriging and other sampling techniques provide information about the extent of

the orebody and types of ore on a per block level at the site. Mine planners use this
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block information along with geospatial rules governing the order in which blocks can

be extracted (known as sequencing constraints) as well as on site operational limits

to create a block extraction sequence. The mine planner’s task is to efficiently guide

the extraction of ore from the mine over its entire life span, which frequently is many

years long. The optimal block extraction schedule assures that the most valuable

ore is removed from the orebody without violating any geospatial or operational

constraints.

Differentiating ore from waste is done by establishing a cutoff grade. The cutoff

grade is heavily affected by the commodity market of the metal being mined; if the

metal is worth more, then a lower cutoff grade is used because lower quality ore

can still result in profits. The cutoff grade must either be treated as variable in the

problem or assumed to be constant. The latter is often the case to ensure a tractable

problem formulation.

One set of limitations in open pit mine design is geospatial in nature. Material

must be removed from the mine in such a way as to ensure that the hole created

does not collapse in on itself. If only a static (i.e., single time period) picture of

the mine is required, these sequencing constraints are essentially the only constraints

that must be adhered to. Maximizing the value of the mineral in the orebody subject

to these sequencing constraints results in a final mine layout called the ultimate pit

limits (note, the ultimate pit limits assume a fixed cutoff grade). The ultimate pit

limits define an economic envelope of the valuable ore in the orebody and indicate

how much the ore is worth in today’s dollars (i.e., without accounting for the time

value of money).

The solution to the ultimate pit limits problem is often used to economically

justify a project. If the cost of removing the material to reach the ultimate pit limits

is more than the profit of the ore processed from this removed material, then the entire

mining venture likely results in negative profits and the project is not advisable. The

ultimate pit limits also guide mine planners in locating various on-site features such
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as production equipment, maintenance shops, personnel offices, and other support

facilities.

Incorporating time into the mine design results in a much more complicated prob-

lem—the block sequencing problem. Now the mine planner must not only determine

which blocks to remove, but when to actually remove them; hence, side constraints

must be obeyed. These side constraints enforce requirements on the average grade

extracted from the mine per time period and impose lower and upper bounds on

the amount of material extracted (i.e., produced) and sent to mills (i.e., processed)

per time period. Average grade constraints, which are only required in formulations

with a variable cutoff grade, ensure that on average the grade of blocks extracted

in a certain time period be between minimum and maximum qualities. Production

constraints relate to the amount of equipment the mine has at its disposal per time

period, while processing constraints involve per time period limits at the mills to

which the removed ore is sent.

Production and processing rates are defined on a per time period basis. The

actual length of this time period is chosen somewhat arbitrarily. A shorter time period

results in a schedule of higher fidelity, but also contains more variables. Generally,

a time period is chosen such that an entire block can be extracted and processed

completely during the time period; otherwise, blocks could only be partially removed,

causing practical implementation issues.

The optimal solution to the block sequencing problem is a time-indexed schedule

of when any given block in the orebody should be removed (if it is removed at all)

that maximizes the net present value of the ore at the site subject to all sequencing

and operational constraints. The sequencing constraints impose slope requirements

on the walls of the pit while the operational constraints provide lower and upper

bounds on average grade, production rates, and processing rates.

Solving the block sequencing problem poses unique challenges that can be ad-

dressed with a diverse set of solution methodologies. Because of the mathematical
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structure of the block sequencing problem, its theoretical complexity is exponential.

Real-world model instances, like the one studied in this paper, tend to overtax stan-

dard mixed integer programming algorithms and make solving the block sequencing

problem too cumbersome. Although advances in computer hardware and software

have made this problem more tractable, better solution approaches and strong for-

mulations are still required to ensure reasonable computing times for large mines.

There have been two major approaches to solving the block sequencing problem.

The first, which we call the ultimate pit limits-based approach, decomposes the prob-

lem into three stages and sequentially solves each stage of the problem to arrive at

a mine schedule. The second, known as the comprehensive approach, takes a global

view of the problem to determine the optimal block extraction sequence, thus avoid-

ing sub-optimal mine schedules that are inherently created using the former ultimate

pit limits-based approach.

1.2 Ultimate Pit-Limits Based Approaches to Block Sequencing

Traditionally, the ultimate pit limits are calculated first and then a series of

pushbacks is determined to create a schedule of operations for the mine. One generates

a series of nested pits by gradually increasing the ore price of the material being

mined. The mine planner chooses a fictitious ore price and determines which blocks

are mined and which are left unextracted. This results in a set of blocks that defines

the first nested pit. Next, the mine planner raises the price and determines which of

the remaining blocks to extract from the pit. This results in the second nested pit.

The process continues until all blocks in the orebody are analyzed and no further

nested pits can be created.

From the series of nested pits, the outermost pit, or the ultimate pit limits, is

determined. This outermost pit separates the blocks to be mined from those left in the

ground. It is important to note that not all blocks that are extracted are profitable in

and of themselves. If a block is mined, it contributes to the overall profits of the mine
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either by being profitable by itself, or by allowing access to more profitable blocks on

lower levels.

Mine planners group neighboring nested pits into pushbacks based on mine pro-

duction rates, mill processing rates, or other operating constraints that affect the

mine. After the pushbacks have been determined, the production sequence is es-

tablished for blocks in each pushback separately (i.e., only considering blocks in one

pushback at a time), and the mine’s operations are scheduled over the life of the mine.

This three-stage process of determining the ultimate pit limits, creating nested

pits and pushbacks, and then generating a block extraction schedule is the traditional

approach to block sequencing. Decomposing the block sequencing problem into these

three separate stages forces the mine planner to make certain decisions in each stage

without information from the other stages. Making such interrelated decisions inde-

pendently often sacrifices optimality of the overall block extraction schedule.

The implied assumption that prices increase over time may not be valid, ren-

dering the nested pits sub-optimal. If the nested pits are not optimal, the resultant

pushbacks and mine schedule will be sub-optimal as well.

Decomposing the problem into three stages allows certain decisions to be post-

poned to later stages. Since temporal issues do not enter into the mine planner’s

decision process until sequencing the blocks within a pushback, orebody-wide block

extraction decisions are made without considering the time value of money. When

the mine planner is ready to sequence blocks within a given pushback, many blocks

have been eliminated from consideration since they fall outside the ultimate pit limits;

hence, many blocks are not eligible to be sequenced during that time period. Also,

a loose precedence of block extraction has already been established between groups

of blocks via their assignment to a given pushback since generally blocks in the first

pushback are mined before those in the second, etc.

The three-stage process also does not allow for blocks between different pushbacks

to be scheduled for removal in the same time period. In many cases it may be more
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profitable to leave some blocks in a previous pushback unmined and start mining a

new pushback instead of continuing to mine from a currently-active pushback. By

forcing block extraction from just one pushback per time period, the mine planner

loses flexibility and potentially creates a sub-optimal mine schedule.

The three-stage process has been necessary due to the vast number of blocks in

a typical deposit of interest. Partitioning the problem into three stages makes the

problem more manageable. Ideally, an over-arching approach which allows the block

sequencing problem to be solved without sacrificing optimality would be preferable.

Such a method is available, although solving the resultant problem is significantly

more complex.

1.3 Comprehensive Approaches to Block Sequencing

Modern approaches to open pit mine scheduling abandon the three-stage process

in the traditional approach for a process that simultaneously determines the ultimate

pit limits, pushbacks, and block extraction sequence. Each block in the orebody is

analyzed and assigned a time period at which it should start being mined (if at all).

From this block extraction sequence, the mine planner can create pushbacks based

on operational constraints at the mine (such as production and processing rates).

The pit that results once mine operations are complete (i.e., all blocks scheduled for

extraction have been removed) represents the ultimate pit limits which portray the

optimal solution with respect to the net present value of all available ore at the site.

Hence, modern approaches replace the traditional, sub-optimal, three-stage process

with an optimal, comprehensive, one-stage approach.

Since the ultimate pit limits are not necessary to create the pit’s schedule, com-

prehensive approaches to open pit mine scheduling do not explicitly calculate the

ultimate pit limits. In actuality, the static ultimate pit limits might be significantly

different than the final pit outline achieved once the block sequencing problem has

been solved using the comprehensive approach. This is because the time value of
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money and other operational constraints are incorporated into the block sequencing

problem but completely ignored by the ultimate pit limits problem.

Although the comprehensive approach to block sequencing results in a problem

formulation that is less tractable and harder to solve, the solution gained is a truly

optimal mine schedule that considers all blocks in the orebody, not just those in

an arbitrary pushback. The resultant optimal block extraction sequence implicitly

results in a schedule of pushbacks and the ultimate pit limits, all incorporating a

discount factor to account for the time value of money.

1.4 Research Objectives and Expected Outputs

The objective of this research is to increase tractability for a variant of the

block sequencing problem. This problem is commonly formulated as a mixed integer

program (MIP), which is then solved via the branch-and-bound algorithm. Heuristics

are also frequently used, but heuristic solution methods often do not provide a means

for assessing the degree of optimality achieved; they fail to bound the problem’s

objective function value. However, as the number of decision variables (in our case,

the number of blocks in the mine) increases, computation times for the MIPs increase

exponentially. For even small, real-world applications with thousands of variables,

this leads to solution times of days or weeks, which is far too slow for commercial

applications. As a result, most commercial mine planning software (e.g., Whittle,

Vulcan, or MineSight Economic Planner) uses heuristics to create a mine schedule,

albeit the methodology these commercial packages use is protected as a trade secret.

We also formulate our problem as a mixed integer programming problem and use

the branch-and-bound algorithm to solve it. We examine the differences in tractability

between equivalent formulations of the model based on decision variable definitions.

We investigate various deterministic and heuristic solution techniques available for

solving mixed integer programming problems. Among these are variable elimination

techniques, formulation strengthening via cut generation, and decomposition-based
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relaxation approaches to solving mixed integer problems. Our hope is that one (or a

combination) of these techniques significantly reduces computation times.

We apply various deterministic data reduction techniques to: 1) eliminate blocks

from consideration in the model due to their inability to be reached before a certain

time period (i.e., defining earliest start times); 2) pre-set the mining decision of

certain blocks in the model due to their position in the mine (i.e., setting latest start

times). These techniques reduce the number of decision variables (and implicitly the

number of constraints) that must be examined by the algorithm, thus strengthening

the problem’s formulation and expediting solution time.

We attempt to produce cuts that strengthen the model’s formulation, making the

problem more tractable. Although the generation of these cuts requires a significant

amount of time, the reduction in the original problem’s solution time that they afford

makes the initial investment worthwhile.

Lastly, we investigate Lagrangian relaxation techniques that allow us to converge

to the optimal solution more quickly than solving the monolith (original problem).

Reducing the solution time for the block sequencing problem allows mine plan-

ners to efficiently schedule larger orebodies that until now were too big to handle.

Mine planners now have at their disposal a tool that can give them an optimal extrac-

tion schedule rather than a best guess that is sub-optimal and potentially misleading

(i.e., a mine schedule for a mine which should never have been considered for extrac-

tion).
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Chapter 2

LITERATURE REVIEW

2.1 Determining the Ultimate Pit Limits

The ultimate pit limits represent the set of blocks in the pit that maximizes

the total profit of the pit based on each block’s current net profit and its physical

location in the mine. A block’s net profit is the difference between the total value

of the extracted mineral in the block and the cost of extracting that material from

the mine and processing the block at a mill. A block’s physical location is important

because blocks on lower levels of the mine cannot be accessed until those blocks above

it are removed. The ultimate pit limits represent a static boundary of blocks that

maximizes the non-discounted value of the mineral in the orebody.

Solving the ultimate pit limits problem is extensively reviewed in the literature.

Laurich (1990) and Thomas (1996) provide excellent overviews of the literature ap-

plicable to this problem. Kim (1978) and Hulse (1992) address various ways that a

block can be defined, an issue that must be resolved in order to determine the layout

of the ultimate pit. Achireko and Frimpong (1996) use neural networks to examine

the stochastic nature of a block’s grade and weight characteristics, showing that the

assumed homogeneity of a block’s grade or weight could severely alter the ultimate

pit.

Dynamic programming methods use intelligent enumeration to determine the

ultimate pit limits. Lerchs and Grossman (1965) use dynamic programming methods

to solve two-dimensional versions of the ultimate pit limits problem. Koenigsberg

(1982), Wilke and Wright (1984), Shenggui and Starfield (1985), and Wright (1987)

also use dynamic programming to solve the ultimate pit limits problem, but tackle
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the three-dimensional version.

Another method of solving the ultimate pit limits problem is by using network

flow algorithms. Network flow formulations model the orebody as a network of nodes

representing the blocks in the mine connected by arcs representing the sequencing

constraints between the blocks. The goal of the model is to maximize the flow from a

source node to a sink node. When the algorithm terminates, those arcs that originate

at the source and have excess capacity represent profitable blocks that should be

mined in the optimal solution. These profitable blocks and any other blocks that

must be mined to reach them represent the ultimate pit limits. In the same paper

in which they use dynamic programming to solve two-dimensional versions of the

ultimate pit limits problem, Lerchs and Grossman (1965) model an open pit mine as

a weighted, directed graph where vertices represent blocks and arcs represent mining

restrictions (i.e., sequencing constraints). They determine the ultimate pit limits by

solving for the maximum closure of this graph. Zhao and Kim (1992) use a similar

approach with some modifications that they claim solve problem instances faster

than the Lerchs and Grossman method. Johnson (1969), Picard (1976), Yegulalp et

al. (1993), Hochbaum and Chen (2000), and Hochbaum (2001) also use network flow

algorithms to derive solutions for the ultimate pit limits problem.

Heuristics use short-cuts to solve the ultimate pit limits problem; however, many

are either flawed or not capable of bounding the objective function values they derive.

Pana (1965) creates the floating cone heuristic, also known as the moving cone or dy-

namic cone heuristic. Laurich (1990) and Thomas (1996) review the general idea

behind Pana’s original algorithm. Korobov (1974) attempts to improve on Pana’s

method. Dowd and Onur (1992) attempt to correct the flaws in Korobov’s algorithm.

Laurich (1990) reviews a constructive heuristic known as the incremental pit expan-

sion method. Tamatomi et al. (1995) outline the latest developments in floating cone

methods. Alford (1995) creates a new version of the floating cone algorithm called

the floating stope method, but it too results in sub-optimal ultimate pit limits.
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Exact optimization approaches are also common means of solving the ultimate

pit limits problem. Gershon (1982), Cai (1989), and Huttagosol and Cameron (1992)

use linear programming methods to solve the ultimate pit limits problem. Ovanic

and Young (1995) use a branch-and-bound approach incorporating special ordered

sets to solve the ultimate pit limits problem.

2.2 Ultimate Pit Limits-Based Approaches to Block Sequencing

The ultimate pit limits-based approach to open pit mine scheduling was the

original method used to solve the block sequencing problem (see Section 1.2 for more

explanation). This traditional approach served as a bridge between the ultimate

pit limits problem and the block sequencing problem, and an extensive amount of

literature appears on the topic.

Osanloo, Gholamnejad, and Karimi (2007) provide an excellent overview of the

models and algorithms used to solve the long-term open pit mine production planning

problem. Their review includes both deterministic and stochastic approaches. With

respect to deterministic approaches, they address solely ultimate pit limits-based

approaches.

Johnson (1968) uses Dantzig-Wolfe decomposition principles to solve the block

sequencing problem. He breaks the multi-time period problem into single-time period

problems which he solves as ultimate pit limit problems. The master problem enforces

operational constraints (i.e., production and processing requirements) while the sub-

problems enforce sequencing constraints. According to Osanloo, Gholamnejad, and

Karimi (2007), his methodology results in sequencing constraint violations and can

only handle a relatively small data set.

Osanloo, Gholamnejad, and Karimi (2007) show how Roman (1974) uses dy-

namic programming to enumerate block sequences and then select the optimum se-

quence based on maximizing NPV. This method becomes far too cumbersome with

even small data sets, and there is no guarantee that production and processing con-
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straints are adhered to in each time period.

Gershon (1982) describes a linear programming application that optimizes the

scheduling of mining operations. His block scheduling optimization concept uses a

mathematical model to determine the most profitable mine operation scheme from

pit-to-plant-to-market. By accounting for pit-plant-market interfaces and optimizing

operations over the entire life of the mine, Gershon’s model is able to calculate long,

intermediate, and short-range mine plans. His mine scheduling optimization concept

determines the ultimate pit limits for a specific time period subject to equipment

availability, plant requirements, and market conditions, intrinsically creating an ex-

traction schedule which eventually results in the ultimate pit limits. Because his

method is based on linear programming, it allows for partial blocks to be mined if all

precedent blocks have been completely removed.

Dagdelen (1985) uses Lagrangian relaxation to solve the block sequencing prob-

lem. His methodology resorts to elastic operational constraints as a means of over-

coming the problem of infeasibility that results when using optimal decision variable

values from the solution to the Lagrangian relaxation subproblem in the monolith.

Gershon (1987) develops a mine scheduling heuristic based on a block’s positional

weight, “the sum of the ore qualities within the cone generated downward from a block

within the ultimate pit,” (Gershon, 1987, p. 8) to determine when a block should

be mined. The positional weight of a block defines the desirability of removing that

block at a particular point in time; higher positional weights are more desirable. The

accessible block with the highest rank is extracted and then the entire process, starting

from determining the positional weight of the remaining blocks in the ultimate pit,

is conducted again until all the blocks in the ultimate pit have been removed. Wang

and Sevim (1992) use Gershon’s heuristic without requiring prior knowledge of the

actual outline of the ultimate pit.

Thomas (1996) reviews a process called the nested Lerchs-Grossman algorithm

that uses the Lerchs-Grossman algorithm to create a series of nested pits which is
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aggregated into pushbacks. A mine planner then schedules the block extraction se-

quence for each individual pushback, creating an overall mine schedule. The nested

Lerchs-Grossman algorithm is based on parametric analysis in which the development

of the pit is characterized by gradual modification of one or more key parameters.

The parameter chosen by Lerchs and Grossman is the amount by which the economic

value of each block in the model is reduced. As this economic value of each block

is progressively increased past certain critical values, the ultimate pit limits contour

changes to enclose a smaller volume. The end result is a series of nested pits. There-

fore, this technique is referred to as the Nested Lerchs-Grossman algorithm. However,

gaps between nested pits can result in infeasible schedules where production or pro-

cessing capacity cannot reconcile the difference between consecutive nested pits, thus

essentially violating the block extraction sequencing constraints.

Dowd and Onur (1992) use dynamic programming to schedule the extraction

sequence of blocks in the ultimate pit. Noting that their method suffers from expo-

nential growth in processing time as the number of blocks increases, they point out

that many block extraction sequences can be eliminated because they are infeasible,

thus reducing the search space. They concede, however, that eliminating infeasible

block sequences only helps the problem incrementally and that dynamic programming

is still impractical for large mines.

Tolwinski and Underwood (1992) use dynamic programming to determine the

optimal production schedule for an open pit mine that satisfies both physical and

economic constraints. They model the evolution of the mine as a sequential opti-

mization problem by generating a sequence of pits which starts at an initial pit or

unmined surface and proceeds through incrementally larger pits until the ultimate

pit is created.

Onur and Dowd (1993) point out that the extraction schedule and the physical

means of extracting the ore (via haul roads and safety berms) must be incorporated

into the final mine plan. They describe a simple block construction that allows haul
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roads to be incorporated into the pit’s design.

Wang and Sevim (1995) present an alternative to the economic block value pa-

rameterization method used by Lerchs and Grossman for finding a series of nested pits

for production planning. They point out that the method of parameterization which

is commonly used to create a series of nested pits often results in consecutive pits that

are too far apart from each other because operational constraints do not allow the

leap from one nested pit to its neighbor. Wang and Sevim create an algorithm that

can generate nested pits with controllable size increments (i.e., controllable gaps) to

meet mine-specific production and/or processing capacity limits, thus overcoming the

gap problem.

According to Osanloo, Gholamnejad, and Karimi (2007), Tolwinski and Golosin-

ski (1995) and Tolwinski (1998) propose a method of solving the block sequencing

problem based on a depth-first search technique. Although their methodology handles

operational constraints well and is usable for large data sets, it does not guarantee

optimum results with respect to NPV maximization.

Halatchev (2002) emphasizes the difference in time and spatial planning aspects

of an open pit mine. He shows that while the spatial aspect addresses the determi-

nation of the shape and size of pit benches, the time aspect treats the sequencing of

mine extraction activities. In doing so, he describes the interdependencies of these two

ideas and clearly shows the short comings of the ultimate pit limits-based approaches

to block sequencing.

Dagdelen (2005) shows how the block sequencing problem involves the determi-

nation of a cutoff grade, which in turn is used to decide whether or not a given block

should be mined and when it should be mined, and then lastly, once mined, how the

ore should be processed. He describes the circular relationship between the physical

capacities of the mining operations (which, taken with production costs, determine

the ultimate pit) and the design of pushbacks (which, based on the cutoff grade, are

used to actually schedule the extraction of blocks).

15



Ramazan (2001) and (2007) uses a clustering idea to classify the block data

into similar entities (which he calls fundamental trees). Fundamental trees aggre-

gate blocks of material, thereby decreasing the number of integer variables and the

number of constraints required within the MIP formulation. A fundamental tree is

any combination of blocks within a given pushback that can be mined with maximum

NPV while still obeying sequencing constraints. Unfortunately, since the fundamental

trees are only defined within pushbacks, the optimality of this method is completely

dependent on the method used to determine the optimal pushback scheme for the ore

body.

2.3 Comprehensive Approaches to Block Sequencing

Comprehensive approaches to open pit mine scheduling use a one-stage process

to simultaneously determine the ultimate pit limits, pushbacks, and block extraction

sequence (see Section 1.3 for more explanation). This approach is the more popu-

lar means of attempting to solve the block sequencing problem and recently more

literature is appearing on this topic.

Denby and Schofield (1994) use genetic algorithms to simultaneously determine

the ultimate pit limits and the orebody’s extraction schedule. Using the net present

value of the extraction schedule to assess fitness (i.e., the optimality of the schedule),

the fittest members of the population reproduce the most, mimicking the survival of

the fittest analogy in nature. Crossover (mating) between pit schedules and mutation

actions create new generations of pit extraction schedules, ultimately leading to a

better (more fit) extraction schedule. Their method develops the ultimate pit limits

and the mine’s extraction schedule simultaneously, thus avoiding the sub-optimality

faced by ultimate pit limits-based approaches. Although optimality may never be

reached, they claim their genetic algorithm can find good sub-optimal block extraction

schedules.

Osanloo, Gholamnejad, and Karimi (2007) show how Elevli (1995) applies Tol-
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winski and Underwood’s method to obtain the ultimate pit limits and block extraction

sequence simultaneously. However, they point out that Elevli’s method suffers from

the gap problem and that his method does not provide a mathematically proven

optimal solution nor even a feasible solution for large data sets.

Sevim and Lei (1998) describe the simultaneous nature of open pit mine schedul-

ing. They show that long term production planning in open pit mines involves the

simultaneous resolution of four issues: 1) the production rate (number of blocks to

be mined each year), 2) the specific group of blocks that should be mined in a given

year, 3) the cutoff grade to be used to determine ore and waste blocks, and 4) the

ultimate pit limits. They depict these four issues interacting in a circular fashion

and propose a process that simultaneously handles all four aspects of the problem.

Ultimately, their solution methodology generates a series of nested pits, of which the

sequence with the highest NPV is chosen.

Hoerger, Bachmann, Criss, and Shortridge (1999) describe long-term mine ex-

traction and processing scheduling at Newmont’s Nevada Operations. Their complex

model incorporates over thirty mine sources that feed over sixty possible process-

ing facilities during twenty time periods. Their tool employs linear programming to

maximize NPV by matching grade and metallurgical type increments to optimum

processing plants or stockpiles subject to production and processing capacity con-

straints and blending requirements. Additionally, they use integer programming to

sequence actual block extractions from various mines and to handle fixed costs.

Lagrangian relaxation is a tactic used to remove complicating side constraints

from a mixed integer program and transform the problem into a more tractable for-

mulation. Akaike and Dagdelen (1999) use Lagrangian relaxation to convert their

integer-programming formulation into one based on networks. Their underlying prob-

lem formulation has a network flow structure with a complicating side constraint in

the form of a production capacity constraint. They integrate this production capac-

ity constraint into the objective function, creating a long-term production scheduling
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problem with the same characteristics as the final pit design problem. This relaxed

problem is then solved via the maximum closure algorithm that Lerchs and Grossman

use in their original work with the three-dimensional ultimate pit problem. Akaike

and Dagdelen then use an iterative process that alters the values of the Lagrangian

multipliers until the solution to the relaxed problem meets the original capacity con-

straints. Their model does not contain any processing or average grade constraints.

Hence, dualizing just the production capacity constraints results in a network struc-

tured formulation which is more tractable than their original problem formulation.

Cai (2001) also uses Lagrangian relaxation by incorporating operational con-

straints into the block’s net value calculation via multipliers to penalize violations of

these constraints. Cai, however, does point out that using Lagrange multipliers may

not result in objective function value convergence to an acceptable solution for all

problem instances due to the complexity of the problem and the existence of gaps

between nested pits. As such, he admits that it is may be impossible to produce a

multi-period schedule using his Lagrangian relaxation methodology.

Erarslan and Çelebi (2001) determine a production schedule to maximize net

present value subject to grade, blending, production and other operational con-

straints. They use dynamic programming to solve their problem for a fixed pit volume.

They enumerate various volumes to determine the optimal pit size. In doing so, the

authors claim that their method solves the ultimate pit limits problem and the block

sequencing problem simultaneously. But, since their procedure is based on a dynamic

programming approach, it is not efficient for medium to large data sets.

Kumral and Dowd (2002) use simulated annealing to create an optimal mine op-

erating schedule via a two-stage optimization routine. The first stage uses Lagrangian

parameterization that results in an initial sub-optimal solution. This is followed in

the second stage by applying multi-objective simulated annealing to further improve

the sub-optimal schedule.

Ramazan and Dimitrakopoulos (2004a) present a general description of an effi-
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cient mixed integer program for the open pit mine scheduling problem. They aim to

maximize the overall discounted net present value of the mine’s ore subject to the

limitations of wall slope requirements, grade blending requirements, ore production,

and mine capacity. They also propose reducing the number of binary variables by

separating positively valued blocks (which they call “ore” blocks) from negatively val-

ued blocks (which they call “waste” blocks). Only variables representing ore blocks

are defined as binary, while those representing waste blocks remain continuous, thus

allowing for partial excavation. Their analysis shows that such a scheme can signifi-

cantly reduce solution times.

In another paper, Ramazan and Dimitrakopoulos (2004b) show that mixed in-

teger programming formulations fail to produce practical mining schedules due to,

inter alia, in-situ variability of orebodies. They propose an alternative mixed integer

programming formulation that considers the probability of blocks being scheduled in

a given production period, thus dealing with the in-situ variability and other practical

issues of scheduling patterns. They show how their methodology is especially appli-

cable to poly-metallic deposits, where orebody uncertainty is usually a significant

issue.

Menabde, Froyland, Stone, and Yeates (2004) examine the mine optimization

problem under uncertainty by using a set of conditionally simulated orebody models.

Their formulation simultaneously optimizes the block extraction sequence and the

cutoff grade.

Froyland, Menabde, Stone, and Hodson (2004) examine the value of additional

information with respect to open pit mining projects. The information used to create

a block model is gathered from a series of drillholes that provides a set of data from

which a three-dimensional model of the orebody is created. The more drillholes

used, the more accurate the data are. However, each drillhole has an associated cost

and the information garnered may be of marginal benefit. The authors examine the

trade-off between expending additional funds on more information (in the form of
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additional drillholes) and the benefits of the information gathered. If the drillhole

provides information that significantly alters the mine planner’s perception of the

orebody, the overall mining operation may become more profitable and make the cost

of attaining the additional information worthwhile.

Boland, Fricke, and Froyland (2006) examine the use of knapsack inequalities

and covers to create valid and useful cuts to expedite solution time. They show that

this method can be used to create cuts for pairs of blocks and larger sets of blocks.

However, they contend that in the multiple block case (where more than two blocks

are involved) generating the cuts involves a separate optimization problem and the

time savings garnered from including the cuts in the mine scheduling problem could

easily be lost due to the time required to actually generate the cuts themselves.

Kawahata (2006) expands on the Lagrangian relaxation procedure developed by

Dagdelen (1985) and includes a dynamic cutoff grade policy to maximize the pit’s

NPV in his formulation. He utilizes two Lagrangian relaxation subproblems, one for

the most aggressive mine sequencing case and the other for the most conservative mine

sequencing case, to bound the optimal solution space. These bounds help eliminate

variables from the monolith, thus significantly expediting solution time.

Boland, Dumitrescu, Froyland, and Gleixner (2007) use aggregation techniques

to reduce the number of binary variables in their problem formulation. They use

aggressive block aggregation to schedule production at the mine (i.e., the removal of

material) and then disaggregate their data back into individual blocks to make the

processing decisions at the mills. They propose an iterative process to disaggregate

the solutions obtained with aggregated data.

Espinoza, Goycoolea, Moreno, and Rubio (2008) create a class of heuristics based

on the notion of topological sorting obtained from directed graphs of the resource-

constrained open-pit mining problem. Their preliminary results indicate that feasibil-

ity pre-processing (an earliest start idea) has promise but that post-processing (i.e.,

fixing certain variables) is not very useful.
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Chapter 3

THE MODEL

With the goal of maximizing the net present value (NPV) of the ore in the pit,

the block sequencing problem endeavors to determine the most efficient extraction

sequence of the usable material while meeting sequencing, average grade, production

and processing constraints. This NPV is the sum of all the extracted blocks’ dis-

counted net profits. A block’s profit is calculated as the market value of the ore in

the block minus the costs of removing and processing the material in the block, and

then discounting this number based on the time of extraction and an appropriate

discount factor. The solution to the block sequencing problem is a block extraction

schedule indicating when and if each block is scheduled for removal from the pit.

3.1 Defining the Block Sequencing Problem

Assumptions

In order to make our problem more manageable, we make the following assump-

tions:

• We use a fixed cutoff grade in our model. This means that if a block meets the

cutoff grade, then we consider it ore; otherwise, we consider it waste. Because

we use a fixed cutoff grade, the average grade requirements are moot since they

are always met. As such, we do not employ average grade constraints in our

model formulation.

• We employ a 45◦ sloping rule when describing our geospatial sequencing require-

ments. Additionally, we use the plus (+) sign convention when determining

21



block sequencing in our three-dimensional block model (see Figure 3.2).

• We do not allow fractional mining of blocks. When we start mining a block in

a given time period, it is completely removed from the orebody by the end of

that time period. The decision to remove a block is an all-or-nothing decision;

hence, the decision is easily modeled using binary (0-1) decision variables.

• We do not concern ourselves with any equipment or manpower allocation issues.

Our model formulation views the mine from a strategic level and the resultant

schedule identifies mine extraction operations on a per-block basis only. Mine

planners can then use this block sequencing information to assign resources and

labor to actually remove the blocks from the mine.

• Our model is completely deterministic. We assume that we know the location,

mineral content, and total material content of each block in the orebody with

absolute certainty.

Decision Variables

The decision variables in the block sequencing problem are whether or not to

remove any given block during any given time period. A block can be removed at

most once. Not all blocks need be removed from the pit. If the orebody consists

of |B| blocks and the time horizon for the mine is |T | time periods, then there are

|B| · |T | binary decision variables involved in the problem formulation.

Objective Function

The objective of our problem is to maximize the net present value of the ore in

the mine. We calculate this NPV by summing all the extracted blocks’ discounted

net profits. The profit of a block is the market value of the block’s ore minus the

costs of removing and processing that material. We account for the time value of

22



money by discounting this profit based on the time period in which we remove the

block from the mine.

Constraints

Our objective function is constrained by both geophysical and operational con-

straints:

• We must obey the sloping requirements and sequencing constraints to ensure

that the pit walls do not collapse. As stated in the assumptions above, we use

a 45◦ sloping rule and the plus (+) sign three-dimensional convention.

• Since we assume a fixed cutoff grade, we implicitly adhere to minimum and

maximum average grade constraints. As such, these constraints are moot and

are not included in our problem formulation for simplicity.

• We must abide by minimum and maximum production constraints for each time

period. These constraints bound the amount of material that can be removed

from the mine (i.e., produced from the orebody).

• We must comply with minimum and maximum processing constraints for each

time period. These constraints limit the amount of ore that can be sent to the

mills for processing.

3.2 Conceptual Framework

This research applies variable elimination techniques, formulation strengthen-

ing methods, and Lagrangian relaxation approaches to improve solution times for

the block sequencing problem. We apply the comprehensive approach (discussed in

Section 1.3) to solve the block sequencing problem. Although this comprehensive

approach results in a block sequencing problem that is more difficult to solve than

the ultimate pit limits-based approach, the results are more robust because no block
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extraction decisions are made independently. By explicitly incorporating time into

the problem formulation, discounting accounts for the time value of money and re-

sults in an optimal mine schedule that maximizes the net present value of the ore in

the pit.

As mentioned in the introduction, open pit mines are modeled using a collection

of three-dimensional rectangular blocks. Each block has a total amount of material

and a quantity of valuable mineral associated with it. The goal of the block sequencing

problem is determining the proper order in which to remove all the minable blocks in

the orebody.

Because, at the most basic level, a mine planner must decide whether or not

to remove a given block, we use binary variables to represent the decision regarding

whether or not each block in the mine should be removed. To account for its location

in the mine, each block is assigned an (x,y,z ) position in three-space. We represent

the actual time period in which a block is removed by a time index (t). The block

sequencing problem formulation is therefore comprised of binary decision variables

for each (x,y,z ) block in the mine indexed by time (t). Upon solving the problem,

each binary variable is assigned a value that indicates during which time period (if

at all) each block is scheduled for extraction.

The solution to the block sequencing problem results a value for each binary

variable in the problem. If a block is scheduled for removal, then its binary variable

with the corresponding time index has a value of one (1). A value of zero (0) means

that a block is not removed. Over the life of the mine, many blocks are assigned an

extraction date (represented by the time period they are to be removed) and the rest

have no extraction date, meaning they are left in the ground.

Binary variables by themselves do not preclude non-integer based solution meth-

ods from being employed. However, the presence of side constraints such as those im-

posed by minimum and maximum production, processing, and average grade bounds

necessitate the use of mixed integer programming methods to determine the most
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efficient block extraction sequence for the mine. Side constraints remove the possi-

bility of using elegant network solution methods and limit us to much slower integer

programming approaches.

3.2.1 Two-Dimensional Conceptual Models

To explain our model conceptually, we resort to a basic two-dimensional mine

representation (see Figure 3.1). Each block b in the figure has a number used to

identify it. Additionally, each block b contains a certain amount of valuable mineral

(gb) and a total amount of material (nb). The mine’s operations are constrained

by minimum and maximum bounds with respect to material production rate, ore

processing rate, and average extraction grade requirements.

Figure 3.1. Two-Dimensional Conceptual Model. We use this model to describe the
basic concepts involved in our problem formulation.

The first issue to resolve in our model is whether each block is ore or waste. The

ore versus waste disposition of each block is determined by comparing the amount of

mineral (gb) to the total amount of material (nb) in each block. If this ratio is greater

than the cutoff grade, then the block is considered ore; otherwise, it is considered

waste. An ore block is sent to a processing mill where the valuable mineral is extracted

and sold if that block is scheduled for extraction in the final mine schedule. A waste

block may need to be removed to access other blocks, but it would be disposed of.

Our model assumes a single fixed cutoff grade, meaning that a block is classified
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a priori as either ore or waste. Other models may use a set of cutoff grades. Using a

set of cutoff grades means that each block is classified as waste or as a certain quality

of ore. Employing a set of cutoff grades means that blocks removed from the mine

can be shipped to many different processing mills depending on the quality of ore

present in the block. Regardless of whether one or a set of cutoff grades is used, if the

cutoff value(s) is (are) fixed, then the ore removed always meets the average grade

constraint of the processing mill(s) to which it is sent.

However, if we assume a variable cutoff grade, then on average the ore sent to

a certain mill must meet that mill’s processing requirement. Using a variable cutoff

grade necessitates the use of explicit average grade constraints (i.e., minimum and

maximum bounds on the average grade of ore sent to each processing mill) as well

as another index on each decision variable. This additional index (l) represents the

actual location (i.e., the waste dump or a certain processing mill) to which a given

block is sent in the optimal solution. Because we assume a fixed cutoff grade, we

do not need to concern ourselves with the average grade of the ore sent to the mill;

therefore, we do not include average grade constraints in our model formulation.

Sequencing constraints represent the geospatial limitations open pit mines en-

counter. The basic laws of physics require that the pit is created in such a way so that

the resulting hole does not fall in on itself. Commonly referred to as sloping require-

ments, sequencing constraints help prevent such side-wall catastrophes. A commonly

assumed slope requirement is 45◦, meaning that in order to mine block 9 in Figure

3.1, blocks 1, 2, and 3 must be mined first. Blocks on higher levels in the mine that

are not profitable in and of themselves can only be removed if their cost is covered by

profitable blocks on lower levels. For instance, if block 1 has a negative profit (i.e.,

a net cost), then blocks 8 and 9 (which both depend on block 1 being removed to

be removed themselves) must have enough net profit to cover the cost of removing

block 1. This shared dependence structure in the mine allows high-cost blocks on

upper levels to be removed from the pit due to high-value blocks located lower in the
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orebody that have a relatively greater profit than the costs of the blocks above.

The slope requirement is enforced throughout the ore-body. To access blocks

deeper in the mine, more material above these blocks must be removed. To access

block 18 in Figure 3.1, blocks 2, 3, 4, 5, 6, 10, 11 and 12 must all be removed.

Aside from the geospatial constraints, each mine must adhere to a set of opera-

tional constraints. Unlike geospatial constraints that do not have a per time period

limitation, operational constraints are based on minimum and maximum bounds per

time period.

Minimum production bounds require that a certain amount of material is re-

moved from the mine each time period. Likewise, minimum processing bounds re-

quire that a certain amount of ore is sent to the mill each time period. Recall that

ore is different from material in that ore is material from a block that has met the

cutoff grade. These minimum bounds place an upper limit on the life of the mine, a

fact that is useful for reducing the number of variables in the problem.

In the same vein, the maximum bounds limit the amount of work done at the

mine. With the maximum production capacity and the maximum processing capac-

ity, we can determine a lower bound on the life of the mine. As is the case with

the minimum bounds, the maximum bounds are useful for reducing the number of

variables in the problem.

3.2.2 Three-Dimensional Conceptual Models

To relate to the real-world, our two-dimensional example must be extended to

three dimensions. The sequencing constraints require us to examine a two-dimensional

plane of blocks on the level above the block in question. In the two-dimensional

example, using a 45◦ sloping requirement means looking at three blocks above the

block in question. When this idea is extended to three dimensions, maintaining the

sequencing constraints becomes more difficult.

A common method of satisfying the sloping requirements is to examine the five
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blocks that form a plus (+) sign above the block

method satisfies the 45' sloping requirements from

below.

in question (see Figure 3.2). This

the faces of the block on the level

Figure 3.2. 3-D Plus Sign Upper Level Block Example. This graphic depicts the five
blocks (blocks 2 through 6) that form a plus (+) sign above the block on the lower
Ievel (block 1).

There are other methods of satisfying the sloping requirements, one in particular

requiring all nine blocks above the block in question be mined. These nine blocks

form a rectangle above the block on the level below (see Figure 3.3). This method

satisfies the 45" sloping requirements from the faces and the corylers of the block on

the level below. There are other sequencing rules depending on the geography of pit

and the surrounding waste rock. For our model) we use the plus sign convention as

shown in Figure 3.2.

Figure 3.3. 3-D Rectangular Upper Level Block Example. This graphic depicts the
nine blocks that form a rectangle above the block on the lower level.

Looking at Figure 3.2, it is apparent that in order to extract block 1 (the lower

level block) all five blocks above it must be removed (blocks 2, 3, 4,5, and 6) to

maintain the sloping requirements. Maintaining the sloping requirements in this

way satisfies the geospatial sequencing constraints and keeps the hole created by the

mining operations from falling in on itself.
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The operational constraints are the same for the three-dimensional extension of

the problem as they are in the two-dimensional example. Each block is classified as

waste or ore based on the assumed cutoff grade and the comparison of mineral content

to total material in the block. We must also adhere to production and processing

constraints in the same way that we did in the two-dimensional example.

Extending the block sequencing problem to three dimensions significantly in-

creases the number of variables involved in the problem as compared to the two-

dimensional conceptual model. Taking the concept even further to a mine composed

of thousands or even millions of blocks makes for a truly immense problem. Large de-

posits requiring higher-fidelity schedules (say, on the order of weeks instead of months

or quarters) result in models with millions of binary variables that even the most ef-

ficient mixed integer programming algorithms cannot solve in a reasonable amount

of time. Problems of this magnitude are more common in today’s environment of in-

creasingly scarce natural resources where ore is harder to find and pits must be made

bigger and deeper to reach valuable minerals. Solving the block sequencing problem

on such a large scale requires more efficient algorithms and stronger formulations to

ensure that mine planners optimize their mine’s activities.

3.3 Mathematical Formulation

The mathematical formulation for the block sequencing problem is rather straight-

forward. The objective is to maximize the net present value of the ore in the pit sub-

ject to all geospatial and operational constraints. To make the model more tractable,

we assume that each block requires only one time period to extract. In other words,

once the extraction of a block is started in any given time period, that block is com-

pletely removed from the pit by the end of that time period. This also means that a

block cannot be extracted over two time periods (i.e., in a fashion such that half the

block is removed in one time period and the other half in another time period).

The mathematical formulation also ensures that a block can only be mined once
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during the life of the mine. If this limitation is not imposed, the model may attempt

to repeatedly extract high valued blocks, leading to erroneous results.

Specifically regarding the constraints imposed on the model, the sequencing and

operational constraints ensure that:

• The blocks are removed in a sequence that adheres to geospatial sloping con-

straints.

• The extraction sequence adheres to a minimum and maximum average grade

per time period.1

• The extraction sequence adheres to a minimum and maximum production rate

per time period.

• The extraction sequence adheres to a minimum and maximum processing rate

per time period.

The model formulations (i.e. the at formulation in Section 3.3.1 and the by formula-

tion in Section 3.3.2) use the following notation:

indices:

b = block

t = time period

sets:

B = set of all blocks (so b ∈ B)

T = set of all time periods, i.e., the time horizon (so t ∈ T )

1Note that for our model this is implicitly met due to our fixed cutoff grade assumption. Hence,

this constraint is not explicitly required in our formulation, but we include it for completeness.
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Bb = set of blocks that must be extracted directly before block b (thus

ensuring that the geospatial constraints are adhered to)

Tb = set of time periods in which block b can be extracted

data:

vbt = net present value generated by mining block b in time period t ($)

gb = average grade of block b (ounces, tons, percentage)

nb = total weight of block b including waste (tons)

rb =







nb if gb ≥ cutoff grade (i.e., if block b is classified as ore)

0 otherwise (i.e, if block b is classified as waste)

G = minimum grade that can be sent to the mill in any time period (ounces,

tons, %)

G = maximum grade that can be sent to the mill in any time period

(ounces, tons, %)

C = minimum mill processing requirement in any time period (tons)

C = maximum mill processing capacity in any time period (tons)

E = minimum mine production requirement in any time period (tons)

E = maximum mine production capacity in any time period (tons)

We now clarify some of the notation used above. With respect to the net present

value generated by mining block b in time period t (vbt), this number is the net profit

realized by removing block b (call it πb) at time period t discounted by an appropriate

discount factor (call it δ). Therefore vbt is calculated as:

vbt =
πb

(1 + δ)t
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A negative net profit represents a block that is not worth removing on its own merit,

while a positive net profit represents a block that is worth removing and may be able

to pay for the removal of other negative profit blocks above it. With respect to rb,

this number defines the amount of usable ore (i.e., material with enough mineral in

it to justify processing it to remove said mineral) contained in block b. If the block

has enough mineral content to meet the cutoff grade, then the block (composed of

the usable mineral and the waste) is sent to the processing mill where the mineral is

removed and sold. However, if the block’s mineral content is not sufficient to meet

the cutoff grade, then the block is considered waste and its ore weight (rb) is zero.

3.3.1 At Time t Formulation

One method of defining the variables for this problem is to identify at what

time period (the t index) a given block (the b index) is mined. This results in |T |

(the number of time periods) variables defined for each block |B| (the total number

of blocks in the model), giving us a total of |T | · |B| variables. We present this at

formulation below (Pat).

Variables: The variables in (Pat) are defined as:

ybt =







1 if block b is mined at time period t

0 otherwise

Objective Function: The objective of (Pat) is to maximize net present value of

the extracted ore:

max NPV =
∑

b∈B

∑

t∈T

vbtybt

Constraints: The constraints for (Pat) are:
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∑

t∈T

ybt = 1 ∀ b ∋ arg maxTb ≤ |T | (3.1)

∑

t∈T

ybt ≤ 1 ∀ b ∋ arg max Tb > |T | (3.2)

G
∑

b∈B

rbybt ≤
∑

b∈B

gbrbybt ≤ G
∑

b∈B

rbybt ∀ t (3.3)

E ≤
∑

b∈B

nbybt ≤ E ∀ t (3.4)

C ≤
∑

b∈B

rbybt ≤ C ∀ t (3.5)

ybt ≤
t
∑

τ=1

yb′τ ∀ b ∈ B, b′ ∈ Bb, t (3.6)

ybt ∈ {0, 1} ∀ b, t (3.7)

Constraints (3.1) require certain blocks (those that must be mined due to their

location in the pit) to be mined during the time horizon. Constraints (3.2) permit

certain blocks (those whose location does not require them to be mined during the

time horizon) to be mined no more than once during the time horizon. Constraints

(3.3) require the average grade of ore extracted to be between a minimum and a

maximum in each time period. Constraints (3.4) ensure that the total amount of

material extracted is between the minimum and maximum allowable production ton-

nage. Constraints (3.5) require the total tonnage of ore sent to the mills be between

the mills’ minimum and maximum processing capacity. Constraints (3.6) are the

precedence constraints that enforce extraction sequencing between production blocks

based on the 45◦ plus-sign sloping limitations. For example, according to these se-

quencing constraints, in order to mine a block with coordinates (x,y,z ), the five blocks

above this block with coordinates (x,y,z+1), (x -1,y,z+1), (x+1,y,z+1), (x,y-1,z+1),

and (x,y+1,z+1) must be mined.2 Additionally, one of the four blocks on the same

level surrounding the given block, i.e., one of the blocks with coordinates (x -1,y,z ),

2The z -coordinates are labeled such that higher numbers represent blocks higher in the pit.
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(x+1,y,z ), (x,y-1,z ), or (x,y+1,z ), must be mined. We call this constraint the sixth

sequencing constraint and refer to it as such.3 Lastly, constraints (3.7) restrict all

variables to be binary.

Since our model assumes a fixed cutoff grade, the average grade requirement is

met implicitly. As such, the average grade constraints (constraints 3.3) are always

met and can be considered redundant and actually removed from the formulation.

3.3.2 By Time t Formulation

Instead of using binary variables to explicitly define at what time period a block

is mined, we can define the binary variables to specify whether or not a block is

mined by a certain time period. This means that the block can be mined in any time

period up to and including the one identified by the t index. This idea is first used by

Bertsimas and Stock (1998) (also summarized in Bertsimas and Tsitsiklis 1997) with

respect to the air traffic flow management problem. Hoffman and Ball (2000) refer to

the Bertsimas-Stock idea as a linear transformation in their review of various formula-

tions for the single-airport ground-holding problem. Hoerger, Bachmann, Criss, and

Shortridge (1999) are the first to define by-based decision variables to formulate their

model of long term mine and process scheduling at Newmont’s Nevada Operations.

Caccetta and Hill (2003) also employ this by definition in their formulation of the

open pit mine scheduling problem. With this by formulation, the decision variables

are:

wbt =







1 if block b is mined by time period t

0 otherwise

The by formulation can be translated into the at formulation by using the fol-

lowing transformation:

3Blocks on the boundary of the orebody are not subject to this constraint.
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ybt =







wbt − wb,t−1 if 2 ≤ t ≤ |T |

wbt if t = 1

Instances using the by formulation tend to solve more quickly than the at formu-

lation because the resultant branch-and-bound tree is more balanced. The packing

constraints that result with the at formulation (constraints 3.1 and 3.2) create a very

strong branch (when one of the ybt variables is set equal to 1) and a very weak branch

(with the other variables set equal to 0) for a given b and all t. Because of this weak

branch, the linear programming (LP) relaxation results in a weak upper bound. When

the by formulation is used, the two branches are more balanced. The by variable set

equal to 1 does not provide as strong of a branch as the at variable set equal to 1,

but the other by variables that are set equal to 0 provide a stronger branch than the

at variables set equal to 0. The resulting better balanced LP relaxation produces a

stronger upper bound.

While our by formulation is similar to the one described by Bertsimas and Stock

(1998), it does not have the same effect. Using the by formulation, Bertsimas and

Stock create a facet defining constraint set, which results in a problem formulation

that is significantly easier to solve. In our case, the resulting constraint set is not

facet defining. In fact, we can achieve the same strength of formulation using special

ordered sets and the at formulation.

We present this alternate formulation using by-based decision variables below

(Pby).

Variables: The variables in (Pby) are defined as:

wbt =







1 if block b is mined by time period t

0 otherwise
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Objective Function: The objective of (Pby) is to maximize net present value of

the extracted ore:

max NPV =
∑

b∈B

∑

t∈T

vbt (wbt − wb,t−1)

Constraints: The constraints for (Pby) are:

wb,t−1 ≤ wbt ∀ b, t > 1 (3.8)
∑

t∈T

(wbt − wb,t−1) = 1 ∀ b ∋ arg maxTb ≤ |T | (3.9)

∑

t∈T

(wbt − wb,t−1) ≤ 1 ∀ b ∋ arg maxTb > |T | (3.10)

∑

b∈B

gbrb (wbt − wb,t−1) ≥ G
∑

b∈B

rb (wbt − wb,t−1) ∀ t (3.11)

∑

b∈B

gbrb (wbt − wb,t−1) ≤ G
∑

b∈B

rb (wbt − wb,t−1) ∀ t (3.12)

E ≤
∑

b∈B

nb (wbt − wb,t−1) ≤ E ∀ t (3.13)

C ≤
∑

b∈B

rb (wbt − wb,t−1) ≤ C ∀ t (3.14)

wbt ≤ wb′t ∀ b ∈ B, b′ ∈ Bb, t (3.15)

wbt ∈ {0, 1} ∀ b, t (3.16)

Constraints (3.8) require block b to be mined by time period t if it is already

mined by time period t-1. Constraints (3.9) require certain blocks (those that must

be mined due to their location in the pit) to be mined during the time horizon.

Constraints (3.10) permit certain blocks (those whose location does not require them

to be mined during the time horizon) to be mined no more than once during the time

horizon. Constraints (3.11) and (3.12) require the average grade of ore extracted to be

between a minimum (constraints (3.11)) and a maximum (constraints (3.12)) in each
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time period.4 Constraints (3.13) ensure that the total amount of material extracted

is between the minimum and maximum allowable production tonnage. Constraints

(3.14) require the total tonnage of ore sent to the mills be between the mills’ minimum

and maximum processing capacity. Constraints (3.15) are precedence constraints

that enforce extraction sequencing between production blocks based on the plus-sign

sloping limitations. These constraints require that in order to remove block b by time

period t, all the blocks above it (i.e., in the set Bb) must be removed by time t also.

Lastly, constraints (3.16) restrict all variables to be binary.

As with the at formulation, since we assume a fixed cutoff grade, the average

grade requirement is met implicitly. Therefore, the average grade constraints (con-

straints (3.11) and (3.12) above) are always met and can be considered redundant

and actually removed from the formulation.

The Pby constraint set is very similar to the Pat constraint set, aside from a few

notable differences. In the Pby formulation, constraints (3.8) are added to ensure that

once a block is mined by a certain time period, it is also mined every time period

thereafter. The sequencing constraints in the Pby formulation (constraints (3.15)) are

also notably different. Specifically, they do not involve any summation. This allows

us to compare variable values directly, making for a much stronger formulation.

4We split the average grade constraint from the at formulation into two separate constraints for

the by formulation merely for presentation purposes.
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Chapter 4

SOLUTION METHODOLOGIES

Since the by formulation creates a more balanced node tree than the at formu-

lation, we use it to explore all potential methods to expedite solution times. All the

methods we examine can also be applied to the at formulation, although additional

work is required to implement some of these methods due to differences in how the

by and at decision variables are defined.

Exact methods are an approach commonly used to solve mixed integer program-

ming (MIP) problem instances. The branch-and-bound algorithm is the most common

exact method used to solve MIP problems. Using branch-and-bound to solve MIP

problem formulations guarantees an optimal solution if the algorithm is run to com-

pletion. However, this may require a long time, so we often terminate the algorithm

and report the gap between the best integer solution found at the time of termination

and what may be theoretically obtainable. This gap is referred to as a mipgap.

We propose various short-cuts that maintain the exact nature of the branch-

and-bound algorithm, but significantly improve its solution time. These short-cuts

endeavor to limit the search space by eliminating certain variables or a priori setting

the values of other variables. Other exact methods involve the generation of valid

and useful cuts that make the problem formulation more tractable. Lastly, we use

Lagrangian relaxation techniques to solve the problem faster.

Eliminating those variables from the model whose values would necessarily as-

sume a value of 0 or 1 in the optimal solution is one exact method. One way to

eliminate variables from the model is to establish an earliest start time for each block

b ∈ B (we call it ESb). ESb represents the earliest time period that block b can
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be reached if the mining rate occurs at the upper production or processing bound

(whichever is tighter) without violating sequencing constraints. The earliest start

time allows us to eliminate from the model any variables that would mine block b

before its earliest start time (i.e., the values of these variables are set to 0).

Another way to eliminate variables from the model is to establish a latest start

time for each block b ∈ B (we call it LSb). LSb represents the latest time period that

block b must be mined if the mining rate occurs at the lower production or processing

bound (whichever is tighter) without violating sequencing constraints. The latest

start time allows us to pre-determine the values of any variable that would mine

block b after its latest start time (i.e., the values of these variables are set to 1).

We define our variables only in time periods between their earliest and latest start

times. This decreases the number of nodes that the branch-and-bound algorithm must

examine, thus speeding up solution times.

It is important to note that determining earliest and latest start times requires

that the bounds used in the calculations are fixed (i.e., not elasticized). Some prob-

lem instances result in infeasibilities which can be resolved by relaxing some of the

constraints. The constraints that are relaxed are elasticized by allowing them to

be violated at a fixed penalty. If a bound (say, the minimum processing bound) is

elasticized, then it cannot be used in the late start calculation.

Exact methods also entail the creation of cuts, or constraints that involve pairs or

groups of variables. Cuts are constraints that are added to the formulation that may

force the linear relaxation of the problem to behave more like an integer program.

The goal is to ensure that none of the cuts eliminates any of the variables in the

optimal solution, but do provide a benefit to the algorithm. As such, we aim to

create cuts that are valid—so they do not remove any optimal integer solutions—and

(theoretically) useful—force decision variables to assume integer values in the linear

relaxation of the problem (i.e., strengthen z∗LP ). Although many cuts may not be

theoretically useful in the strictest sense, they may still provide practically useful
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information by either limiting the number of blocks that can be accessed by a certain

time period or requiring a certain number of blocks be accessed by a certain time

period. We exploit the structure of our problem to generate these cuts.

Lagrangian relaxation techniques attempt to transform the monolith problem

formulation into a more tractable formulation, solve this new formulation, and then

use that solution’s decision variable values in the monolith. Specifically, Lagrangian

relaxation moves certain complicating constraints to the objective function where

they are weighted with fixed multipliers to discourage violations. We then solve the

Lagrangian relaxation subproblem and use the optimal decision variable values in the

monolith (assuming they are feasible), attempting to bound the objective function

value of the monolith.

4.1 Numerical Example

To help explain the earliest start, latest start, cut generation, and Lagrangian

relaxation methodologies, we use the two-dimensional conceptual model developed in

Section 3.2.1. We present this basic two-dimensional mine again below (see Figure

4.1). With respect to this example, we make the following assumptions:

• The numbers in the blocks are merely used to identify the blocks

• Each block contains 10 tons of material (i.e., nb = 10 tons)

• Each block contains 10 grams of valuable mineral (i.e., gb = 10 grams)

• The minimum and maximum processing bounds are 20 tons and 40 tons, re-

spectively, and are constant across all time periods (i.e., C = 20 and C = 40 ∀ t)

• The minimum and maximum production bounds are 20 tons and 40 tons, re-

spectively, and are constant across all time periods (i.e., E = 20 and E = 40 ∀ t)
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• The fixed cutoff grade is 1 gram of mineral per 1 ton of material


i.e., rb =







nb if gb ≥ cutoff grade

0 otherwise





• The slope requirements are 45◦

Figure 4.1. Two-Dimensional Numerical Example. This model provides a numerical
example for use in the various methodologies we propose to expedite solution times.

The first issue to resolve in this model is whether each block is ore or waste.

This is determined by applying the cutoff grade to each block. Since each block in

the model contains 10 grams of mineral, the average grade of each block is 1 gram of

mineral per ton of material. Based on our fixed cutoff grade of 1 gram of mineral per

1 ton of material, each block in this example is considered ore. This means that each

extracted block is sent to a mill.

The 45◦ slope requirements mean that the sequencing constraints for this example

behave the same way as those described in the two-dimensional conceptual model.

See Section 3.2.1 for more information on the sequencing constraints for this example.

Aside from the geospatial constraints, the mine must also adhere to a set of

operational constraints. These operational constraints set minimum and maximum

bounds on production and processing capacity as well as average grade requirements

during each time period. Because this example assumes a fixed cutoff grade, the

average grade requirements are rendered moot and do not need to be considered. For

simplicity, we assume that both production and processing have the same minimum
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and maximum per time period bounds (20 tons and 40 tons, respectively); however,

in practice this is rarely the case.

The minimum operational bounds require that a certain amount of work is done

at the mine during each time period. The minimum production bound requires that 20

tons of material are removed from the mine each time period. Likewise, the minimum

processing bound requires that 20 tons of processable material (i.e., blocks that meet

the cutoff grade) are removed from the mine each time period. These minimum

bounds place an upper bound on the life of the mine and allow us to establish a

maximum time horizon for the mine’s operations. Since 20 tons of material and 20

tons of processable material must be removed from the mine each time period, and

due to the fact that the mine contains 210 tons of material (21 blocks each with 10

tons of material) and 210 tons of processable material (all 21 blocks meet the cutoff

grade, therefore each block is an ore block), the life of the mine cannot be longer

than 11 time periods (210 divided by 20 is 10.5, so activity at the mine ends during

the eleventh time period). We use this fact to reduce the number of variables in the

problem via the latest start time idea and to generate cuts.

In the same vein, the maximum operational bounds limit the amount of work

done per time period at the mine. With a maximum production capacity of 40 tons

of material and a maximum processing capacity of 40 tons of processable material,

we can determine a lower bound on the life of the mine (i.e., a minimum time horizon

for operations at the mine). Again, since the mine contains 210 tons of material and

210 tons of processable material, if operations are conducted at maximum production

and processing levels, the earliest time that activity at the mine can finish is by the

sixth time period (210 divided by 40 is 5.25, so activity ceases after the first quarter

of the sixth time period). As was the case with the minimum operational bounds,

we use the maximum operational bounds to reduce the number of variables in the

problem via an earliest start time. We also use these minimum operational bounds

to generate cuts.
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4.2 Earliest Starts and Latest Starts

We use the concept of earliest and latest starts to eliminate variable instances

from consideration and fix variable values, respectively. To determine these starts,

we exploit precedence between the blocks along with the minimum and maximum re-

source bounds; the former bounds produce late starts while the latter bounds produce

early starts.

4.2.1 Earliest Starts Based on Maximum Production and Processing Bounds

We can determine an earliest start time for each block b ∈ B , i.e., ESb, to reduce

the number of elements in the set Tb from including the entire time horizon. This

earliest start algorithm eliminates those variables from the model whose values would

necessarily assume a value of 0 in the optimal solution. By using the sequencing con-

straints and the upper bounds on production and processing capacity, we determine

the earliest possible time that block b can be reached if we were to mine as quickly

as possible. We can then eliminate any variables that represent mining block b be-

fore its earliest possible start time. Assuming that the upper bounds of neither the

production capacity nor the processing capacity are elasticized in our formulation, we

determine an earliest start time based on the production capacity and also an earliest

start time based on the processing capacity for each block in the model. The overall

earliest start time for each block is the later of these two earliest start times. Thus,

the tightest earliest start time is established for each block in the model.

Kuchta, Newman, and Topal (2003) use an early start idea with their work at

LKAB’s Kiruna mine; however, they investigate an underground mine with signifi-

cantly different sequencing and operational constraints. Their model does not explic-

itly define maximum bounds on processing or production rates, but instead employs

the early start time idea using horizontal and vertical sequencing rules with respect to

operating adjacent machine placements (sites on which load haul dump units operate
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to remove iron ore from the mine). Boland, Fricke, and Froyland (2006) present a gen-

eral format for the earliest start method by combining block precedence constraints

with production constraints and then aggregating them over time for a particular

attribute (such as total ore in each block or amount of usable ore in each block).

Our method is similar to theirs; however, we use all applicable attributes (i.e., pro-

duction and processing capacity limits) to independently determine an earliest start

based on each attribute. We then define each block’s overall earliest start as the

most constraining of the block’s independently derived earliest starts based on each

attribute.

The earliest start time reflects how long it takes to reach block b based on its

location in the pit, the maximum production capacity, and the maximum processing

capacity as defined in the problem formulation. Our algorithm, which computes an

earliest start time for every block in the pit, first calculates the support weight of each

block in the pit. This support weight represents the tons of material or the tons of

ore from all the blocks that must be mined (based on the sequencing constraints) in

order to mine the block in question. The support weight also explicitly includes the

tons of material or tons of ore for the given block. We actually calculate two types

of support weights, one with respect to tons of material and another with respect to

tons of processable material. This support weight with respect to tons of material

is then divided by the maximum production capacity and the support weight with

respect to tons of processable material is divided by maximum processing capacity

to arrive two earliest start times for each block in the pit. Since each block has two

earliest start times, the maximum of these two numbers (which represents the later

of the two earliest start times) is the earliest possible time period that the block in

question can be started.
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Earliest Starts Algorithm

Assumptions We include all the assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• B = Set of blocks which exists in the data set. Each block b ∈ B has the

following characteristics:

– An (x, y, z ) location in three-space

– A total material content (in tons), nb

– A mineral content (in grams), gb

∗ If the cutoff grade is met, then the block is considered ore and for that

block the ore weight (rb) is:

rb = nb

∗ If the cutoff grade is not met, then the block is considered waste and

for that block the ore weight (rb) is:

rb = 0

– A precedence set – the set of blocks that must be removed from the pit

due to pit sloping requirements before block b can be accessed

• Sb = Block b and its precedence set (i.e., the set of blocks that block b supports)

• TotalSupportedOreb = Total amount of ore (in tons) in the set Sb (i.e., block

b and all blocks above block b based on the precedence constraints)

• TotalSupportedMaterialb = Total amount of material (in tons) in the set Sb

(i.e., block b and all blocks above block b based on the precedence constraints)
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• EarlyStartOreb = Earliest start time of block b based on the maximum pro-

cessing constraint

• EarlyStartMaterialb = Earliest start time of block b based on the maximum

production constraint

• ESb = Earliest start time of block b based on the more constraining bound

(processing or production)

Inputs

• A set of blocks B

• Maximum processing capacity per time period (in tons of ore) and maximum

production capacity per time period (in tons of material). Note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized).

Outputs

• ESb - The earliest possible start time for block b ∈ B based on geospatial

sequencing constraints and the more constraining of the maximum processing

and maximum production constraints

Algorithm

begin

for each block b ∈ B do

begin

TotalSupportedOreb = sum of rb for each block in Sb (block b and its

precedence set)

TotalSupportedMaterialb = sum of nb for each block in Sb (block b

and its precedence set)
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EarlyStartOreb =
⌊

TotalSupportedOreb

max processing capacity

⌋

+ 1

EarlyStartMaterialb =
⌊

TotalSupportedMaterialb
max production capacity

⌋

+ 1

ESb = max (EarlyStartOreb, EarlyStartMaterialb)

end

output ESb for each block b ∈ B

end

Earliest Starts Numerical Example The idea behind the early starts variable

elimination routine is best explained by examining Figure 4.2 below:

Figure 4.2. Earliest Starts Numerical Example. This example depicts the results of
using the earliest starts routine on block 18.

As stated in Section 4.1, the maximum production capacity is 40 tons per period and

each block contains 10 tons of material. This means that in order to reach block 18 in

the figure above, 80 tons of material have to first be removed based on the assumed

45◦ sloping requirements. Therefore block 18 cannot be removed until period 3 at

the earliest because removing 80 tons of material requires two complete time periods.

Hence, block 18 cannot be reached until time period 3. As such, block 18 has an

earliest start time of 3 based on the maximum production constraint. Because the

maximum processing capacity is also 40 tons per period and each block meets the

cutoff grade (so that each block contains 10 tons of processable material), the earliest
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start time for block 18 based on maximum processing capacity is also 3. There is no

need to investigate the feasibility of block 18 being part of the optimal solution until

time period 3. Therefore it is not necessary to define decision variables corresponding

to whether or not to mine block 18 during time periods 1 and 2, so, we eliminate

these two variables from the problem formulation.

4.2.2 Latest Starts Based on Minimum Production and Processing Bounds

Similar to the concept of earliest start times, we can compute a latest start time

for each block b ∈ B, i.e., LSb. Generating a latest start time for each block forces

the algorithm to set each block’s value to mined upon reaching its latest start time

by fixing its value to 1 in the optimal solution. Using the sequencing constraints

in conjunction with the lower bounds on production and processing capacity, we

determine the latest possible time that block b can be reached if we were to mine as

slowly as possible. We can set the value of any variable that would indicate mining

block b after its latest start time to 1 (i.e., mined). Assuming that the lower bounds

of neither the production requirement nor the processing requirement are elasticized

in our formulation, we determine a latest start time based on production requirements

and processing requirements for each block in the model. The overall latest start time

for each block is the earlier of these two latest start times. Therefore, the tightest

latest start time is established for each block in the model.

Kuchta, Newman, and Topal (2003) employ the latest start idea in their work

with LKAB’s Kiruna mine. However, their model does not explicitly define minimum

bounds on processing or production rates. Instead, they use horizontal and vertical

sequencing rules regarding adjacent machine placements along with information re-

garding which machine placements are active. Boland, Fricke, and Froyland (2006)

do not present any methodology for generating latest starts. Their work only covers

earliest starts.

The latest start time reflects the most time that can pass before block b must
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be mined based on its location in the pit, the minimum production requirement, and

the minimum processing requirement as defined in the problem formulation. Our

algorithm computes a latest start time for every block in the pit by determining each

block’s holding weight. This holding weight represents the tons of material or the tons

of ore that cannot be mined (based on the sequencing constraints) until the block in

question is mined. The holding weight also explicitly includes the tons of material or

tons of ore for the block in question. Just as with the earliest start times concept, we

actually calculate two types of holding weights, one with respect to tons of material

and another with respect to tons of processable material. The holding weight with

respect to tons of material is then divided by the minimum production requirement

while the holding weight with respect to tons of processable material is divided by

the minimum processing requirement to arrive at two latest start times for each block

in the pit. The overall latest start time for each block is the earlier of the two latest

start times calculated for each block.

Latest Starts Algorithm

Assumptions Just as with the earliest starts algorithm, we include all the assump-

tions that we describe with respect to our model formulation (see Section ??).

Definitions

• B represents the set of blocks which exists in the data set. Each block b ∈ B

has the following characteristics:

– An (x, y, z ) location in three-space

– A total material content (in tons), nb

– A mineral content (in grams), gb

∗ If the cutoff grade is met, then the block is considered ore and for that

block the ore weight (rb) is:
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rb = nb

∗ If the cutoff grade is not met, then the block is considered waste and

for that block the ore weight (rb) is:

rb = 0

– A holding set – the set of blocks that is being held up by block b (i.e., all

the blocks in B that cannot be removed from the pit due to pit sloping

requirements until block b is removed from the pit)

• Hb = Block b and its holding set (i.e., the set of blocks being held up by block

b from being mined)

• TotalHeldUpOreb = Total amount of ore (in tons) in the set Hb (i.e., block b

and all blocks below block b based on the precedence constraints)

• TotalHeldUpMaterialb = Total amount of material (in tons) in the set Hb (i.e.,

block b and all blocks below block b based on the precedence constraints)

• TotalOreInP it = Total amount of ore (in tons) in the entire pit (sum of all ore

blocks in B, i.e., sum of rb for all b ∈ B)

• TotalMaterialInP it = Total amount of material (in tons) in the entire pit (sum

of all material in B, i.e., sum of nb for all b ∈ B)

• LateStartOreb = Latest start time of block b based on the minimum processing

constraint

• LateStartMaterialb = Latest start time of block b based on the minimum

production constraint

• LSb = Latest start time of block b based on the most constraining bound

(processing or production)
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Inputs

• A set of blocks B

• Minimum processing requirements per time period (in tons of ore) and mini-

mum production requirements per time period (in tons of material). Note that

these requirement constraints must be hard constraints (i.e., they cannot be

elasticized).

Outputs

• LSb - The latest possible start time for block b ∈ B based on geospatial se-

quencing constraints and the more constraining of the minimum processing and

minimum production constraints

Algorithm

begin

for each block b ∈ B do

begin

TotalHeldUpOreb = sum of rb for each block in Hb (block b and its

holding set)

TotalHeldUpMaterialb = sum of nb for each block in Hb (block b and

its holding set)

LateStartOreb =
⌊

TotalOreInP it−TotalHeldUpOreb

min processing requirement

⌋

+ 1

LateStartMaterialb =
⌊

TotalMaterialInP it−TotalHeldUpMaterialb
min production requirement

⌋

+ 1

LSb = min (LateStartOreb, LateStartMaterialb)

end

output LSb for each block b ∈ B

end
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Latest Starts Numerical Example We now present a numerical example of the

latest starts variable elimination routine by examining Figure 4.3 below:

Figure 4.3. Latest Starts Numerical Example. This example depicts the results of
using the latest starts routine on block 4.

According to the figure above, block 4 is preventing blocks 10, 11, 12, 16, 17, 18,

19, and 20 from being mined. This only leaves blocks 1, 2, 3, 5, 6, 7, 8, 9, 13, 14,

15, and 21 to be mined before block 4 must be mined. As stated in Section 4.1,

each block contains 10 tons of material. The entire pit contains 210 tons of material

and block 4 is holding up production of 90 tons of material, so the leftover material

that can be mined is 120 tons of material (210 − 90 = 120). Based on the assumed

minimum production capacity of 20 tons per period, the latest that block 4 can be

started is time period 7 (120 divided by 20 is 6, so block 4 must start being mined

at the beginning of time period 7). Since the minimum processing capacity is also 20

tons per period and each block meets the cutoff grade (so that each block contains

10 tons of processable material), the latest start time for block 4 based on minimum

processing capacity is also 7. As such, block 4 has a latest start time of 7. The value

of the decision variables for block 4 during any time period including and after time

period 7 must be 1 (recall, 1 means that the block is considered mined). As a result

of the latest start routine, we can a priori set the values of block 4’s decision variables

after time period 6 in our model formulation to 1.
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4.3 Cut Generation Techniques

Generating cuts involves creating valid and useful inequalities that define pairs or

sets of blocks that cannot be mined together. Cuts are constraints that are added to

the formulation that may force the linear relaxation of the problem to behave more

like an integer program. These constructed cuts must not eliminate any optimal

integer solutions (i.e., they must be valid) and should strengthen the formulation by

forcing decision variables to assume integer values in the LP relaxation of the problem

or eliminating the optimal LP relaxation solution (i.e., they should be useful). We

exploit the structure of our problem to create cuts that are valid and useful inequalities

in the form of packing constraints (≤) and covering constraints (≥).

4.3.1 Cuts in General

All generated cuts must be valid and should be useful. By valid, we mean that

the cut cannot remove any feasible integer solutions. If a cut is not valid, then its

inclusion in the problem formulation may result in a sub-optimal solution. Regarding

usefulness, there is a difference between theoretical usefulness and practical usefulness.

Theoretically, a cut is considered useful if, among other things, it renders infeasible

the optimal solution to the current LP relaxation (Rardin 1998, p. 644). From a

practical standpoint, however, a cut that is not theoretically useful may still make

the model formulation more tractable. For instance, consider a cut that states that

at most one of two binary variables can assume a value of one (i.e., a cut in the

form of a + b ≤ 1, where a and b both represent binary variables). Such a cut may

not be theoretically useful, but from a practical standpoint, it may be very useful

(depending, of course, on the other constraints in the model which may render the

cut redundant). If we know that one variable (say a) has a value of 1, then without

any further computation we also know that the other variable must have a value of 0

(i.e., b = 0). The practical usefulness of these cuts may help the branch-and-bound
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process to solve our mixed integer programming problem more quickly.

We use a reasonable block selection rule to determine which blocks to investigate

for the generation of cuts. Although any pair or set of blocks can be combined to form

a cut, many cuts created in such an arbitrary manner are not useful (theoretically or

practically). As such, it is important to limit the number of blocks that are used to

create cuts. We wish to pick the best blocks to investigate for cut generation, thus

increasing the likelihood that the blocks create a valid and useful cut.

Our reasonable block selection rule eliminates from contention those blocks which

have little chance of creating a valid and useful cut. The rule examines individual

blocks while the cut generation algorithms involve multiple blocks. As such, our cut

generation procedures ensure that the cuts are valid and are at least practically useful,

while our reasonable block selection rule dictates which blocks the cut generation

procedures investigate. We employ the reasonable block selection rule as a means

of picking the best blocks for inclusion in cuts, realizing that this rule may actually

eliminate some blocks that could form a valid and useful cut. However, the only way

to create every valid and useful cut is to investigate every possible combination of

blocks; a task that is computationally too expensive.

To derive such a reasonable block selection rule, we borrow the support weight

and holding weight ideas explained in the earliest and latest start routines. These

weights allow us to intelligently select blocks for use in creating cuts that are valid

and have a good chance of being useful. We do this by investigating only those blocks

whose supporting weight (or holding weight) is within a certain percent of the block’s

next earliest start weight (or latest start weight). For earliest starts cuts, this rule is:

PercentClosegrade =
wtore

ES ∗ MaxProc

PercentClosematerial =
wtmaterial

ES ∗ MaxProd

where wtore and wtmaterial represent the processable material weight and total material

54



weight of the block and all of its predecessors, respectively; ES is the earliest start for

the block; and MaxProc and MaxProd are the maximum processing and production

capacities per time period, respectively. For latest starts cuts, the rule is slightly

different:

PercentClosegrade =
wtore

TotalOreInP it − ((LS − 1) ∗ MinProc)

PercentClosematerial =
wtmaterial

TotalMaterialInP it − ((LS − 1) ∗ MinProc)

where wtore and wtmaterial represent the processable material weight and total material

weight of the block and all of its holders, respectively (i.e., blocks that are being held

up, or prevented from being mined, due to the block in question); LS is the latest start

for the block; TotalOreInPit and TotalMaterialInPit represent the total amount of

ore and total amount of material in the entire data set; and MinProc and MinProd are

the minimum processing and production requirements per time period, respectively.

We explain this rule with some examples.

By next earliest start weight we mean the amount of production or processing

capacity (whichever is smaller) required to push the block’s earliest start time to the

very next time period. For instance, in the numerical example we have been employ-

ing, the maximum production capacity is 40 tons per period. Let us identify a block,

a, with a support weight of 10 tons. This block has an earliest start of 1
(⌊

10
40

⌋

+ 1 = 1
)

and is only 25% close to its next earliest start weight
(

10
1∗40

× 100% = 25%
)

. As such,

block a would not be a good candidate for use in generating a cut based on our

reasonable block selection rule. Let us identify another block, b, with a support

weight of 35 tons. This block also has an earliest start of 1
(⌊

35
40

⌋

+ 1 = 1
)

, but it is

87.5% close to its next earliest start weight
(

35
1∗40

× 100% = 87.5%
)

. Block b would

be a much better candidate for inclusion in a cut than block a. Note, however, that

a cut formed by combining blocks a and b actually would form a valid cut of the

form wa,1 +wb,1 ≤ 1 because, assuming they share no blocks between their respective
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predecessor sets, together these two blocks cannot both be mined in time period 1

(because their combined weight is 45 tons and only 40 tons can be mined in time

period 1).

Similarly, by next latest start weight we mean the amount of production or pro-

cessing requirement (whichever is larger) left to push the block’s latest start time to

the previous time period. Again, we consider our numerical example where minimum

production capacity is 20 tons per period. We assume our pit contains 210 tons

of material (consistent with the 21 blocks in our example, each weighing 10 tons).

Consider a block, call it a, with a holding weight of 12 tons. This block has a lat-

est start of 10
(⌊

210−12
20

⌋

+ 1 = 10
)

and is 40% close to its next latest start weight
(

12
210−((10−1)∗20)

× 100% = 40%
)

. Block a probably would not be a good candidate for

use in generating a cut. Let us look at another block, b, with a holding weight of 28.

This block also has a latest start of 10
(⌊

210−28
20

⌋

+ 1 = 10
)

but it is 93.3% close to its

next latest start weight
(

28
210−((10−1)∗20)

× 100% = 93.3%
)

. Picking among these two

blocks, block b would be the better candidate to include in a set of potential blocks

for latest start cut generation.

The percent close numbers here are to illustrate the procedure only. Ultimately,

the user defines the percentage above which a block passes the reasonable block se-

lection rule. A higher percentage reduces the number of blocks included in the cut

generation procedure. Our reasonable block selection rule considers individual blocks,

but the generation of cuts involves two or more blocks. Investigating all two-way,

three-way, etc. combinations of blocks would quickly become computationally too

expensive. As such, we use our reasonable block selection rule as a proxy to select

the best individual blocks to include in the generation of valid and useful multi-block

cuts.

Despite limiting the number of blocks we investigate with our cut generation

algorithm, we still examine many combinations of blocks. Examining all of these

block combinations takes a long time, especially as the number of blocks in the cut
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increases (i.e., there are fewer two-way combinations of a given set of blocks than

there are three-way combinations of the same set of blocks). The time saved by

employing these cuts in our model formulation might be lost due to the time spent

actually creating them. We want to ensure that the reduction in solution time in our

numerical results is not offset by the time required to create the cuts. Determining

the amount of time to spend generating cuts involves a degree of judgment and must

be balanced with the time it takes to solve the monolith. We explore this more in

our numerical results (Section 5.3.2).

Boland, Fricke, and Froyland (2006) present a method of generating cuts by

defining valid knapsack inequalities to serve as cover cuts. However, they only discuss

cuts of the form:
∑

b∈B

wbt ≤ |B̂| − 1

where B̂ is the set of blocks involved in the cut (i.e., B̂ = {a,b} for the two-block

examples above using our reasonable block selection rule). We describe cuts of the

form:
∑

b∈B

wbt ≥ |B̂| − 1

also, which Boland, Fricke, and Froyland do not address. Additionally, they do not

employ a reasonable block selection rule to select blocks for cut generation, instead

attempting to generate cuts using all available blocks.

The right-hand-side of cuts involving more than two blocks can have values up

to one fewer than the number of blocks involved in the cut (i.e.,
{

1, 2, . . . , |B̂| − 1
}

).

The cuts generated by Boland, Fricke, and Froyland, however, only permit a right-

hand-side that is exactly equal to the number of blocks involved in the cut minus one

(i.e., they only use a right-hand-side that equals
(

|B̂| − 1
)

). Our cuts are not limited

in this way. These added cuts further speed up solution times.

To generate cuts involving multiple blocks, we investigate super-blocks, which are

formed by combining the blocks in question and their respective precedence sets (or
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holding sets, as the case may be). When creating these super-blocks, it is important

to use the union operator so that no blocks are double counted in the combined set.

If we consider blocks a and b, then the union of their precedence sets (i.e., Sa,b)

contains the blocks in a’s precedence set (Sa) and the blocks in b’s precedence set

(Sb), without any shared blocks between the two sets counted more than once (i.e.,

Sa,b = Sa ∪ Sb). We then use this super-block in our earliest starts algorithm (or

latest starts algorithm, as the case may be) to determine the earliest possible time

that both blocks a and b can be accessed together as a unit. The earliest starts

algorithm uses the super-block Sa,b instead of the precedence sets Sa and Sb in all

the calculations. The same idea holds for super-blocks formed by combining three or

more blocks and for super-blocks used to determine latest starts.

The cuts generation algorithms allows the user to create cuts based on either

production bounds, processing bounds, or both. As mentioned above, the user con-

trols the percent close employed by the reasonable block selection rule. The user also

controls whether the algorithm generates theoretically useful cuts, practically useful

cuts, or both.

4.3.2 Two-Way Earliest Starts Cuts

A potentially valid and useful cut for our model involves allowing at most one of

two blocks to be mined by a particular time period due to the maximum production

and/or maximum processing constraint. Because we are allowing at most one of two

blocks to be mined, this cut takes the following form:

wa,τ−1 + wb,τ−1 ≤ 1

where a and b are arbitrarily chosen blocks that adhere to the reasonable block selec-

tion rule (see Section 4.3.1). Generate the cut by comparing the earliest start time

for each individual block (ESa and ESb, respectively) with the earliest start time of
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the super-block formed by the union of blocks a and b (ESa,b, referred to as τ). If τ

is greater than both of the single block earliest start times (i.e., τ > max(ESa, ESb)),

then the super-block formed by the union of blocks a and b can only be accessed by

a time period later than the earliest start times for the individual blocks. Because of

this, access is limited to only one of these two blocks by time period τ − 1, and an

appropriate cut of the form wa,τ−1 + wb,τ−1 ≤ 1 can be generated.1

Determining if the Two-Way Earliest Starts Cuts are Valid and Useful

Only cuts that are valid and useful should be included in the model formulation. To

determine if our cuts of the form wa,τ−1 + wb,τ−1 ≤ 1 meet these criteria, we must

pay particular attention to the time index τ − 1.

Based on the earliest start of the super-block formed by the union of blocks a

and b (ESa,b, which we call τ), we know that τ is the earliest possible time period

that both blocks a and b can be mined together. This means that during any time

period before τ , only one of these two blocks can be mined. So, it is valid to limit

access to at most one of the two blocks a and b by time period τ − 1.

It may be practically useful to limit at most one of these two blocks a and

b to be accessed by time period τ − 1, because if the value of one of the blocks

is known to be mined (i.e., say wa,τ−1 = 1) then the value of the other block is

also known due to the cut (wb,τ−1 must equal 0 or the constraint represented by

the cut is violated). To determine the theoretical usefulness of the cut, however,

we must empirically test each cut. We consider a cut theoretically useful if, among

other things, it renders infeasible the optimal solution to the LP relaxation of the

original integer programming formulation. For two-way earliest starts cuts of the

form wa,τ−1 + wb,τ−1 ≤ 1, the cut is useful if the sum of the values of the variables

wa,τ−1 and wb,τ−1 in the optimal LP relaxation (we call them w̃a,τ−1 and w̃b,τ−1) is

1Recall that our decision variables are defined as wbt, where the b index identifies the particular

block and the t index identifies a time period by which the block is extracted.
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greater than 1:

w̃a,τ−1 + w̃b,τ−1 > 1

Two-Way Earliest Starts Cuts Algorithm

Assumptions We again use all assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• a = A block (from the set of blocks B) which adheres to the reasonable block

selection rule

• b = Another block (from the set of blocks B and not the same as a) which

adheres to the reasonable block selection rule

• Sa,b = Set of blocks that must be mined (based on the sequencing constraints)

in order to mine blocks a and b (including explicitly mining blocks a and b).

This set contains blocks a and b and the union of all the blocks in each of their

respective precedence sets (i.e., Sa,b = Sa ∪ Sb, since Sa contains block a and

all the blocks in block a’s precedence set and Sb contains block b and all the

blocks in block b’s precedence set). As a result, no shared blocks between the

precedence sets of blocks a and b are counted more than once in the super-block

represented by Sa,b.

• ESa = Earliest start time for block a (based on either the maximum processing

constraint or the maximum production constraint)

• ESb = Earliest start time for block b (based on either the maximum processing

constraint or the maximum production constraint)
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• τ = ESa,b = Earliest start time for the set of blocks contained in Sa,b (based

on either the maximum processing constraint or the maximum production con-

straint)

Inputs

• A set of blocks B

• Maximum processing capacity per time period (in tons of ore) and maximum

production capacity per time period (in tons of material). Note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized).

Outputs

• Valid cuts of the form:

wa,τ−1 + wb,τ−1 ≤ 1

Algorithm

For each two-way combination of blocks a ∈ B and b ∈ B in which each block

adheres to the reasonable block selection rule with respect to the maximum

production capacity do:

1a. Determine the earliest start time for block a (i.e., ESa) based on the

maximum production capacity

2a. Determine the earliest start time for block b (i.e., ESb) based on the

maximum production capacity

3a. Create the set of blocks that represents the union of the precedence sets

for blocks a and b (i.e., Sa,b)

4a. Determine the earliest start time for the set of blocks contained in Sa,b

(i.e., τ = ESa,b) based on the maximum production capacity
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5a. If τ > max(ESa, ESb) then create a cut of the form:

wa,τ−1 + wb,τ−1 ≤ 1

For each two-way combination of blocks a ∈ B and b ∈ B in which each block

adheres to the reasonable block selection rule with respect to the maximum

processing capacity do:

1b. Determine the earliest start time for block a (i.e., ESa) based on the

maximum processing capacity

2b. Determine the earliest start time for block b (i.e., ESb) based on the

maximum processing capacity

3b. Create the set of blocks that represents the union of the precedence sets

for blocks a and b (i.e., Sa,b)

4b. Determine the earliest start time for the set of blocks contained in Sa,b

(i.e., τ = ESa,b) based on the maximum processing capacity

5b. If τ > max(ESa, ESb) then create a cut of the form:

wa,τ−1 + wb,τ−1 ≤ 1

Output all generated cuts

Relative Dominance of Two-Way Earliest Starts Cuts The time index (τ) in

the cuts we generate provides information about the relative dominance of different

cuts. Take the following two potential cuts:

• wa,2 + wb,2 ≤ 1

• wa,4 + wb,4 ≤ 1
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The first means that at most one of the two blocks a and b can mined by time

period 2, while the second means that at most one of these two blocks can be mined

by time period 4. In this case the latter cut dominates the former. The reason for

this dominance is analogous to the reason that an earliest start of 4 is a stronger

restriction than an earliest start of 2 for any given block. Our two-way earliest starts

cuts algorithm accounts for this dominance and only generates the dominant cut for

any given pair of blocks (assuming such a cut is valid and useful).

Two-Way Earliest Starts Cuts Numerical Example Looking at our two-

dimensional example, we use blocks 10 and 12 to create a two-way earliest starts

cut based on the maximum production capacity (see Figure 4.4).

Figure 4.4. Two-Way Earliest Starts Cuts Numerical Example. This example depicts
the results of creating a two-way earliest starts cut with blocks 10 and 12.

For this example, we assume that:

• Block a is represented by block 10 in the figure and block b is represented by

block 12 in the figure

• Each block contains 10 tons of material (i.e., nb = 10 for each block a and b)

• The maximum production capacity is 40 tons per time period (for simplicity,

we only use production bounds for this example)

63



Recall that our decision variables are defined as wbt, where the b index identifies the

particular block (blocks 10 and 12 in the figure above for this example) and the t

index identifies the time period by which the block is extracted. We now use the

algorithm to generate a two-way earliest starts cut based on maximum production

capacity:

1. Determine the earliest start time for block a:

ESa = 1

2. Determine the earliest start time for block b:

ESb = 1

3. Create the set of blocks that represents the union of the precedence sets for

blocks a and b:

Sa,b = Sa ∪ Sb = {2, 3, 4, 10} ∪ {4, 5, 6, 12} = {2, 3, 4, 5, 6, 10, 12}

4. Determine the earliest start time for the set of blocks contained in Sa,b:

τ = ESa,b = 2

5. Since τ > max(ESa, ESb) we can create a cut of the form:

wa,τ−1 + wb,τ−1 ≤ 1 ⇒ w10,1 + w12,1 ≤ 1

This means that by the end of time period 1, at most one of the two blocks represented

by block 10 and block 12 in the figure above can be mined.

4.3.3 Two-Way Latest Starts Cuts

Building on the two-way earliest starts cuts idea, we now present the latest starts

version of that cut. This potentially valid and useful cut involves forcing at least one

of two blocks to be mined by a particular time period due to the minimum production
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and/or minimum processing constraint. Since we are forcing at least one of two blocks

to be mined, this cut takes the following form:

wa,τ̂ + wb,τ̂ ≥ 1

where a and b are arbitrarily chosen blocks that adhere to the reasonable block se-

lection rule (see Section 4.3.1). The cut is generated by comparing the latest start

time for each individual block (LSa and LSb, respectively) with the latest start time

of the super-block formed by the union of blocks a and b (LSa,b, referred to as τ̂). If

τ̂ is less than both of the single block earliest start times (i.e., τ̂ < min(LSa, LSb)),

then the super-block formed by the union of blocks a and b must be accessed by a

time period earlier than the latest start times for the individual blocks. Because of

this, one of these two blocks must be extracted by time period τ̂ , and an appropriate

cut of the form wa,τ̂ + wb,τ̂ ≥ 1 can be generated.2

Determining if the Two-Way Latest Starts Cuts are Valid and Useful As

with the earliest starts cuts, only valid and useful cuts should be included in the

model formulation. To determine if our cuts of the form wa,τ̂ + wb,τ̂ ≥ 1 meet these

criteria, we again pay particular attention to the time index, which is τ̂ in this case.

Based on the latest start of the super-block formed by the union of blocks a and

b (LSa,b, which we call τ̂ ), we know that τ̂ is the latest possible time period that

both blocks a and b must be mined because as a unit they are holding up access to

the remaining blocks in the pit. By time period τ̂ , therefore, at least one of these two

blocks must be removed from the pit. Even if there exists a single block among a

and b that does not need to be extracted (on its own) until a time period later than

τ̂ , we still need to remove at least one of the two blocks a or b by time period τ̂ to

meet the minimum production and/or minimum processing constraints.

2Recall that our decision variables are defined as wbt, where the b index identifies the particular

block and the t index identifies a time period by which the block is extracted.
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It may be practically useful to require at least one of these two blocks a and b

be mined by time period τ̂ , because if the value of one of the blocks is determined to

be not mined (i.e., say wa,τ̂ = 0) then the value of the other block is also known due

to the cut (wb,τ̂ must equal 1 or the constraint represented by the cut is violated).

Just as with the earliest starts cuts, to determine the theoretical usefulness of the cut,

we must empirically test each cut. We consider a cut theoretically useful if, among

other things, it renders infeasible the optimal solution to the LP relaxation of the

original integer programming formulation. For two-way latest starts cuts of the form

wa,τ̂ + wb,τ̂ ≥ 1, the cut is useful if the sum of the values of the variables wa,τ̂ and

wb,τ̂ in the optimal LP relaxation (we call them w̃a,τ̂ and w̃b,τ̂ ) is less than 1:

w̃a,τ̂ + w̃b,τ̂ < 1

Two-Way Latest Starts Cuts Algorithm

Assumptions We again use all assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• a = A block (from the set of blocks B) which adheres to the reasonable block

selection rule

• b = Another block (from the set of blocks B and not the same as a) which

adheres to the reasonable block selection rule

• Ha,b = Set of blocks that cannot be mined (based on the sequencing constraints)

until blocks a and b are mined (including explicitly mining blocks a and b).

This set contains blocks a and b and the union of all the blocks in each of their

respective holding sets (i.e., Ha,b = Ha ∪Hb, since Ha contains block a and all

the blocks in block a’s holding set and Hb contains block b and all the blocks
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in block b’s holding set). As a result, no shared blocks between the holding sets

of blocks a and b are counted more than once in the super-block represented

by Ha,b.

• LSa = Latest start time for block a (based on either the minimum processing

constraint or the minimum production constraint)

• LSb = Latest start time for block b (based on either the minimum processing

constraint or the minimum production constraint)

• τ̂ = LSa,b = Latest start time for the set of blocks contained in Ha,b (based

on either the minimum processing constraint or the minimum production con-

straint)

Inputs

• A set of blocks B

• Minimum processing requirement per time period (in tons of ore) and mini-

mum production requirement per time period (in tons of material). Note that

these requirement constraints must be hard constraints (i.e., they cannot be

elasticized).

Outputs

• Valid cuts of the form:

wa,τ̂ + wb,τ̂ ≥ 1

Algorithm

For each two-way combination of blocks a ∈ B and b ∈ B in which each block

adheres to the reasonable block selection rule with respect to the minimum

production requirement do:
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1a. Determine the latest start time for block a (i.e., LSa) based on the mini-

mum production requirement

2a. Determine the latest start time for block b (i.e., LSb) based on the mini-

mum production requirement

3a. Create the set of blocks that represents the union of the holding sets for

blocks a and b (i.e., Ha,b)

4a. Determine the latest start time for the set of blocks contained in Ha,b (i.e.,

τ̂ = LSa,b) based on the minimum production requirement

5a. If τ̂ < min(LSa, LSb) then create a cut of the form:

wa,τ̂ + wb,τ̂ ≥ 1

For each two-way combination of blocks a ∈ B and b ∈ B in which each block

adheres to the reasonable block selection rule with respect to the minimum

processing requirement do:

1b. Determine the latest start time for block a (i.e., LSa) based on the mini-

mum processing requirement

2b. Determine the latest start time for block b (i.e., LSb) based on the mini-

mum processing requirement

3b. Create the set of blocks that represents the union of the holding sets for

blocks a and b (i.e., Ha,b)

4b. Determine the latest start time for the set of blocks contained in Ha,b (i.e.,

τ̂ = LSa,b) based on the minimum processing requirement

5b. If τ̂ < min(LSa, LSb) then create a cut of the form:

wa,τ̂ + wb,τ̂ ≥ 1
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Output all generated cuts

Relative Dominance of Two-Way Latest Starts Cuts As with the two-way

earliest start cuts, the time index (τ̂) in the cuts we generate provides information

about the relative dominance of different cuts. Take the following two potential cuts:

• wa,2 + wb,2 ≥ 1

• wa,4 + wb,4 ≥ 1

The first means that at least one of the two blocks a and b must mined by time period

2, while the second means that at least one of these two blocks must be mined by

time period 4. In this case, the former cut dominates the latter. The reason for this

dominance is analogous to the reason that a latest start of 2 is a stronger restriction

than a latest start of 4 for any given block. Our two-way latest starts cuts algorithm

accounts for this dominance and only generates the dominant cut for any given pair

of blocks (assuming such a cut is valid and useful).

Two-Way Latest Starts Cuts Numerical Example Looking at our two-dimensional

example, we use blocks 10 and 12 to create a two-way latest starts cut based on the

minimum production requirement (see Figure 4.5).

Figure 4.5. Two-Way Latest Starts Cuts Numerical Example. This example depicts
the results of creating a two-way latest start cut with blocks 10 and 12.
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For this example, we assume that:

• Block a is represented by block 10 in the figure and block b is represented by

block 12 in the figure

• Each block contains 10 tons of material (i.e., nb = 10 for each block a and b)

• The minimum production requirement is 20 tons per time period (for simplicity,

we only use production bounds for this example)

Recall that our decision variables are defined as wbt, where the b index identifies the

particular block (blocks 10 and 12 in the figure above for this example) and the t

index identifies the time period by which the block is extracted. We now use the

algorithm to generate a two-way latest starts cut based on the minimum production

requirement:

1. Determine the latest start time for block a:

LSa = 9

2. Determine the latest start time for block b:

LSb = 9

3. Create the set of blocks that represents the union of the holding sets for blocks

a and b:

Ha,b = Ha ∪ Hb = {10, 16, 17, 18} ∪ {12, 18, 19, 20} = {10, 12, 16, 17, 18, 19, 20}

4. Determine the latest start time for the set of blocks contained in Ha,b:

τ̂ = LSa,b = 8

5. Since τ̂ < min(LSa, LSb) we can create a cut of the form:

wa,τ̂ + wb,τ̂ ≥ 1 ⇒ w10,8 + w12,8 ≥ 1

This means that by the end of time period 8, at least one of the two blocks represented

by block 10 and block 12 in the figure above must be mined.
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4.3.4 Three-Way Earliest Starts Cuts

Generating cuts with three blocks is significantly more complicated than gener-

ating cuts with just two blocks. With three blocks there are many more combinations

to investigate. Also, the right-hand-side of the constraint can assume two different

values, either 1 or 2. Therefore, the resultant cuts can take either of the following

two forms:

wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1 or wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2

where a, b, and c are arbitrarily chosen blocks that adhere to the reasonable block

selection rule (see Section 4.3.1). The first cut allows at most one of the three blocks

to be mined by a particular time period, while the second cut allows at most two of

three blocks to be mined by a particular time period. As with two-way earliest starts

cuts, we employ the maximum production and/or maximum processing constraints

and the support weights of various blocks to construct our cuts.

Let us assume that we can access all three blocks (a, b, and c) by time period

τ̄ (i.e., ESa,b,c = τ̄ ). Additionally, let us assume that the earliest earliest start time

for all the two-way combinations is τ̄ ′ (i.e., τ̄ ′ =min (ESa,b, ESa,c, ESb,c)). First, we

need to determine how many blocks are accessible before τ̄ . If the earliest earliest

start time for all two-way combinations of the three blocks is less than τ̄ (i.e., τ̄ ′ < τ̄ ),

then by time period (τ̄ − 1) at most two of the three blocks are accessible and it is

valid to limit access to at most two of these three blocks. Next, we need to determine

how many blocks are accessible before τ̄ ′. If the earliest single block earliest start

time for all three blocks is less than τ̄ ′ (i.e., min (ESa, ESb, ESc) < τ̄ ′), then by time

period (τ̄ ′ − 1) at most one of the three blocks is accessible and it is valid to limit

access to at most one of these three blocks.

More specifically, we use the earliest starts algorithm to determine all single

block, pair-wise, and three-way block combination earliest starts (ES ) for our three
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blocks and then define the following:

• τ̄ ′′ = min (ESa, ESb, ESc)

• τ̄ ′ = min (ESa,b, ESa,c, ESb,c)

• τ̄ = ESa,b,c

We then use these three values (τ̄ , τ̄ ′, and τ̄ ′′) to generate our cuts.

If τ̄ is greater than τ̄ ′, then the blocks that comprise the super-block formed by

the union of blocks a, b, and c can only be accessed by a time period later than the

earliest start times for any of the super-blocks formed by two-way combinations of

blocks a, b, and c. As a result, access is limited to only two of the these three blocks

by time period τ̄ − 1 and an appropriate cut of the form wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2

can be generated.

If τ̄ ′ is greater than τ̄ ′′, then any two blocks that comprise the super-block formed

by the union of blocks a, b, and c can only be accessed by a time period later than

the earliest start times for any of the blocks a, b, and c individually. As a result,

access is limited to only one of the these three blocks by time period τ̄ ′ − 1 and an

appropriate cut of the form wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1 can be generated.

Determining if the Three-Way Earliest Starts Cuts are Valid and Useful

As with two-way earliest starts cuts, only those three-way cuts that are valid and

useful should be included in the model formulation. We must ensure that both types

of cuts we generate (≤ 2 and ≤ 1) are valid and useful.

To determine if our cuts of the form wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2 meet these

criteria, we must pay particular attention to the time index τ̄ − 1. Based on the

earliest start of the super-block formed by the union of blocks a, b, and c (ESa,b,c,

which we call τ̄ ), we know that τ̄ is the earliest possible time period that all three of

these blocks can be mined together. This means that during any time period before
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τ̄ , at most two of these three blocks can be mined. So it is valid to limit access to at

most two of these three blocks by time period τ̄ − 1.

It may be practically useful to limit at most two of these three blocks a, b, and

c to be accessed by time period τ̄ − 1, because if the values of two of the blocks are

known to be mined (i.e., say wa,τ̄−1 = wb,τ̄−1 = 1) then the value of the other block

is also known due to the cut (wc,τ̄−1 must equal 0 or the constraint represented by

the cut is violated). To determine the theoretical usefulness of the cut, however, we

must empirically test each cut with specific data. We consider a cut theoretically

useful if, among other things, it renders infeasible the optimal solution to the LP

relaxation of the original integer programming formulation. For three-way earliest

starts cuts of the form wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2, the cut is useful if the sum of

the values of the variables wa,τ̄−1, wb,τ̄−1, and wc,τ̄−1 in the optimal LP relaxation

(we call them w̃a,τ̄−1, w̃b,τ̄−1, and w̃c,τ̄−1) is greater than 2:

w̃a,τ̄−1 + w̃b,τ̄−1 + w̃c,τ̄−1 > 2

To determine if our cuts of the form wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1 are valid and

useful, we must pay particular attention to the time index τ̄ ′−1. Based on the earliest

earliest start of the super-block formed by the union of any two of the blocks a, b,

and c (min (ESa,b, ESa,c, ESb,c), which we call τ̄ ′), we know that τ̄ ′ is the earliest

possible time period that any two of the three blocks can be mined together. This

means that during any time period before τ̄ ′, at most one of these three blocks can

be mined. So it is valid to limit access to at most one of these three blocks by time

period τ̄ ′ − 1.

It may be practically useful to limit at most one of these three blocks a, b, and

c to be accessed by time period τ̄ ′ − 1, because if the value of one of the blocks is

known to be mined (i.e., say wa,τ̄ ′−1 = 1) then the values of the other two blocks

are also known due to the cut (wb,τ̄ ′−1 = wc,τ̄ ′−1 = 0 or the constraint represented
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by the cut is violated). To determine the theoretical usefulness of the cut, how-

ever, we must again resort to empirical tests. We consider a cut theoretically useful

if, among other things, it renders infeasible the optimal solution to the LP relax-

ation of the original integer programming formulation. For three-way earliest starts

cuts of the form wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1, the cut is useful if the sum of

the values of the variables wa,τ̄ ′−1, wb,τ̄ ′−1, and wc,τ̄ ′−1 in the optimal LP relaxation

(we call them w̃a,τ̄ ′−1, w̃b,τ̄ ′−1, and w̃c,τ̄ ′−1) is greater than 1:

w̃a,τ̄ ′−1 + w̃b,τ̄ ′−1 + w̃c,τ̄ ′−1 > 1

It is interesting to note that if τ̄ ′ ≯ τ̄ ′′ (which implies that τ̄ ′ = τ̄ ′′ because τ̄ ′ < τ̄ ′′

is impossible), then although the cut is valid (no optimal answers are precluded

from being examined), it is not useful (practically or theoretically). The reason it

is not useful is because τ̄ ′′ tells us the earliest start time that any single block can

be accessed, so if τ̄ ′ = τ̄ ′′, then by time τ̄ ′ − 1 none of the single blocks will be

accessible due to their single block earliest start times. Essentially, this cut just tells

us something we already know because of each individual block’s earliest start time.

Three-Way Earliest Starts Cuts Algorithm

Assumptions We again use all assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• a = A block (from the set of blocks B) which adheres to the reasonable block

selection rule

• b = Another block (from the set of blocks B and not the same as a) which

adheres to the reasonable block selection rule
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• c = Another block (from the set of blocks B and not the same as a or b) which

adheres to the reasonable block selection rule

• Sa,b = Set of blocks that must be mined (based on the sequencing constraints)

in order to mine blocks a and b (including explicitly mining blocks a and b).

This set contains blocks a and b and the union of all the blocks in each of their

respective precedence sets (i.e., Sa,b = Sa ∪ Sb, since Sa contains block a and

all the blocks in block a’s precedence set and Sb contains block b and all the

blocks in block b’s precedence set). As a result, no shared blocks between the

precedence sets of blocks a and b are counted more than once in the super-block

represented by Sa,b.

• Sa,c = Set of blocks that must be mined (based on the sequencing constraints)

in order to mine blocks a and c (including explicitly mining blocks a and c).

This set contains blocks a and c and the union of all the blocks in each of their

respective precedence sets (i.e., Sa,c = Sa ∪ Sc, since Sa contains block a and

all the blocks in block a’s precedence set and Sc contains block c and all the

blocks in block c’s precedence set). As a result, no shared blocks between the

precedence sets of blocks a and c are counted more than once in the super-block

represented by Sa,c.

• Sb,c = Set of blocks that must be mined (based on the sequencing constraints)

in order to mine blocks b and c (including explicitly mining blocks b and c).

This set contains blocks b and c and the union of all the blocks in each of their

respective precedence sets (i.e., Sb,c = Sb ∪ Sc, since Sb contains block b and

all the blocks in block b’s precedence set and Sc contains block c and all the

blocks in block c’s precedence set). As a result, no shared blocks between the

precedence sets of blocks b and c are counted more than once in the super-block

represented by Sb,c.

75



• Sa,b,c = Set of blocks that must be mined (based on the sequencing constraints)

in order to mine blocks a, b, and c (including explicitly mining blocks a, b

and c). This set contains blocks a, b, and c and the union of all the blocks

in each of their respective precedence sets (i.e., Sa,b,c = Sa ∪ Sb ∪ Sc, since

Sa contains block a and all the blocks in block a’s precedence set, Sb contains

block b and all the blocks in block b’s precedence set, and Sc contains block c

and all the blocks in block c’s precedence set). As a result, no shared blocks

between the precedence sets of blocks a, b, and c are counted more than once

in the super-block represented by Sa,b,c.

• ESa = Earliest start time for block a (based on either the maximum processing

constraint or the maximum production constraint)

• ESb = Earliest start time for block b (based on either the maximum processing

constraint or the maximum production constraint)

• ESc = Earliest start time for block c (based on either the maximum processing

constraint or the maximum production constraint)

• τ̄ ′′ = min (ESa, ESb, ESc)

• ESa,b = Earliest start time for the set of blocks contained in Sa,b (based on

either the maximum processing constraint or the maximum production con-

straint)

• ESa,c = Earliest start time for the set of blocks contained in Sa,c (based on either

the maximum processing constraint or the maximum production constraint)

• ESb,c = Earliest start time for the set of blocks contained in Sb,c (based on either

the maximum processing constraint or the maximum production constraint)

• τ̄ ′ = min (ESa,b, ESa,c, ESb,c)
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• τ̄ = ESa,b,c = Earliest start time for the set of blocks contained in Sa,b,c (based

on either the maximum processing constraint or the maximum production con-

straint)

Inputs

• A set of blocks B

• Maximum processing capacity per time period (in tons of ore) and maximum

production capacity per time period (in tons of material). Note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized).

Outputs

• Valid cuts of the form:

wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2

and

wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1

Algorithm

For each three-way combination of blocks a ∈ B, b ∈ B, and c ∈ B in which

each block adheres to the reasonable block selection rule with respect to the

maximum production capacity do:

1a. Determine the earliest start time for block a (i.e., ESa) based on the

maximum production capacity

2a. Determine the earliest start time for block b (i.e., ESb) based on the

maximum production capacity
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3a. Determine the earliest start time for block c (i.e., ESc) based on the max-

imum production capacity

4a. Create the set of blocks that represents the union of the precedence sets

for blocks a and b (i.e., Sa,b) and determine the earliest start time for this

set (i.e., ESa,b) based on the maximum production capacity

5a. Create the set of blocks that represents the union of the precedence sets

for blocks a and c (i.e., Sa,c) and determine the earliest start time for this

set (i.e., ESa,c) based on the maximum production capacity

6a. Create the set of blocks that represents the union of the precedence sets

for blocks b and c (i.e., Sb,c) and determine the earliest start time for this

set (i.e., ESb,c) based on the maximum production capacity

7a. Create the set of blocks that represents the union of the precedence sets

for blocks a, b, and c (i.e., Sa,b,c) and determine the earliest start time for

this set (i.e., τ̄ = ESa,b,c) based on the maximum production capacity

8a. Determine the earliest that any two-block set can be accessed:

τ̄ ′ = min (ESa,b, ESa,c, ESb,c)

9a. Determine the earliest that any single block can be accessed:

τ̄ ′′ = min (ESa, ESb, ESc)

10a. If τ̄ > τ̄ ′ then create a cut of the form:

wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2
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11a. If τ̄ ′ > τ̄ ′′ then create a cut of the form:

wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1

For each three-way combination of blocks a ∈ B, b ∈ B, and c ∈ B in which

each block adheres to the reasonable block selection rule with respect to the

maximum processing capacity do:

1b. Determine the earliest start time for block a (i.e., ESa) based on the

maximum processing capacity

2b. Determine the earliest start time for block b (i.e., ESb) based on the

maximum processing capacity

3b. Determine the earliest start time for block c (i.e., ESc) based on the max-

imum processing capacity

4b. Create the set of blocks that represents the union of the precedence sets

for blocks a and b (i.e., Sa,b) and determine the earliest start time for this

set (i.e., ESa,b) based on the maximum processing capacity

5b. Create the set of blocks that represents the union of the precedence sets

for blocks a and c (i.e., Sa,c) and determine the earliest start time for this

set (i.e., ESa,c) based on the maximum processing capacity

6b. Create the set of blocks that represents the union of the precedence sets

for blocks b and c (i.e., Sb,c) and determine the earliest start time for this

set (i.e., ESb,c) based on the maximum processing capacity

7b. Create the set of blocks that represents the union of the precedence sets

for blocks a, b, and c (i.e., Sa,b,c) and determine the earliest start time for

this set (i.e., τ̄ = ESa,b,c) based on the maximum processing capacity
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8b. Determine the earliest that any two-block set can be accessed:

τ̄ ′ = min (ESa,b, ESa,c, ESb,c)

9b. Determine the earliest that any single block can be accessed:

τ̄ ′′ = min (ESa, ESb, ESc)

10b. If τ̄ > τ̄ ′ then create a cut of the form:

wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2

11b. If τ̄ ′ > τ̄ ′′ then create a cut of the form:

wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1

Output all generated cuts

Relative Dominance of Three-Way Earliest Starts Cuts As with two-way

cuts, the time index (τ̄ or τ̄ ′) in our generated cuts tells us about the relative domi-

nance of different cuts. Again, cuts with a later time index dominate cuts (involving

the same blocks) with an earlier time index.

Three-way cuts concern themselves with another dominance issue though; the

value to the right of the inequality. Take the following two potential cuts:

• wa,2 + wb,2 + wc,2 ≤ 1

• wa,2 + wb,2 + wc,2 ≤ 2

The first means that at most one of the three blocks a, b, and c can be mined by time

period 2, while the second means that at most two of these three blocks can be mined
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by time period 2. In this case, the former cut dominates the latter. The reason for

this is that the former is more restrictive than the latter. The former restricts access

to only one block, while the latter allows access to any two of the blocks. Our three-

way earliest starts cuts algorithm accounts for this dominance and only generates the

dominant cut for any set of blocks in the same time period (assuming such a cut is

valid and useful).

Three-Way Earliest Starts Cuts Numerical Example Looking at our two-

dimensional example, we use blocks 9, 11, and 13 to create a three-way earliest starts

cut based on the maximum production capacity (see Figure 4.6).

Figure 4.6. Three-Way Earliest Starts Cuts Numerical Example. This example de-
picts the results of creating a three-way earliest start cut with blocks 9, 11, and
13.

For this example, we assume that:

• Block a is represented by block 9 in the figure, block b is represented by block

11 in the figure, and block c is represented by block 13 in the figure

• Each block contains 10 tons of material (i.e., nb = 10 for each block a, b, and

c)

• The maximum production capacity is 40 tons per time period (for simplicity,

we only use production bounds for this example)
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Recall that our decision variables are defined as wbt, where the b index identifies

the particular block (blocks 9, 11, and 13 in the figure above for this example) and

the t index identifies the time period by which the block is extracted. We now use

the algorithm to generate a three-way earliest starts cut based on the maximum

production capacity:

1. Determine the earliest start time for block a:

ESa = 1

2. Determine the earliest start time for block b:

ESb = 1

3. Determine the earliest start time for block c:

ESc = 1

4. Create the set of blocks that represents the union of the precedence sets for

blocks a and b and determine this set’s earliest start time:

Sa,b = Sa ∪ Sb = {1, 2, 3, 9} ∪ {3, 4, 5, 11} = {1, 2, 3, 4, 5, 9, 11}

ESa,b = 2

5. Create the set of blocks that represents the union of the precedence sets for

blocks a and c and determine this set’s earliest start time:

Sa,c = Sa ∪ Sc = {1, 2, 3, 9} ∪ {5, 6, 7, 13} = {1, 2, 3, 5, 6, 7, 9, 13}

ESa,c = 2

6. Create the set of blocks that represents the union of the precedence sets for

blocks b and c and determine this set’s earliest start time:

Sb,c = Sb ∪ Sc = {3, 4, 5, 11} ∪ {5, 6, 7, 13} = {3, 4, 5, 6, 7, 11, 13}

ESb,c = 2
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7. Create the set of blocks that represents the union of the precedence sets for

blocks a, b, and c and determine this set’s earliest start time:

Sa,b,c = Sa ∪ Sb ∪ Sc = {1, 2, 3, 9} ∪ {3, 4, 5, 11} ∪ {5, 6, 7, 13}

= {1, 2, 3, 4, 5, 6, 7, 9, 11, 13}

τ̄ = ESa,b,c = 3

8. Determine the earliest that any two-block set can be accessed:

τ̄ ′ = min (ESa,b, ESa,c, ESb,c) = min(2,2,2) = 2

9. Determine the earliest that any single block can be accessed:

τ̄ ′′ = min (ESa, ESb, ESc) = min(1,1,1) = 1

10. Since τ̄ > τ̄ ′ we can create a cut of the form:

wa,τ̄−1 + wb,τ̄−1 + wc,τ̄−1 ≤ 2 ⇒ w9,2 + w11,2 + w13,2 ≤ 2

11. Since τ̄ ′ > τ̄ ′′ we can create a cut of the form:

wa,τ̄ ′−1 + wb,τ̄ ′−1 + wc,τ̄ ′−1 ≤ 1 ⇒ w9,1 + w11,1 + w13,1 ≤ 1

This means that by the end of time period 2, at most two of the three blocks repre-

sented by blocks 9, 11, and 13 in the figure above can be mined. Also, by the end of

time period 1, at most one of the three blocks represented by blocks 9, 11, and 13 in

the figure above can be mined.

4.3.5 Three-Way Latest Starts Cuts

As is the case in generating three-way earliest starts cuts, three-way latest starts

cuts can assume either of the following two forms:

wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1 or wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2
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where a, b, and c are arbitrarily chosen blocks that adhere to the reasonable block

selection rule (see Section 4.3.1). The first cut requires that at least one of three

blocks be mined by a particular time period, while the second cut requires that at

least two of three blocks be mined by a particular time period. As with two-way

latest starts cuts, we employ the minimum production and/or minimum processing

constraints and the holding weights of various blocks to construct our cuts.

Let us assume that we must mine all three blocks (a, b, and c) by time period τ̃

(i.e., LSa,b,c = τ̃ ). Additionally, let us assume that the latest latest start time for all

the two-way combinations is τ̃ ′ (i.e., τ̃ ′ =max (LSa,b, LSa,c, LSb,c)). First, we need

to determine how many blocks must be mined after τ̃ . If the latest latest start time

for all two-way combinations of the three blocks is later than τ̃ (i.e., τ̃ ′ > τ̃), then

by time period τ̃ at least one of the three blocks must be mined and it is valid to

force at least one of the decision variables representing these three blocks to assume

a value of 1 (i.e., mined). Next, we need to determine how many blocks must start

to be mined after τ̃ ′. If the latest single block latest start time for all three blocks is

later than τ̃ ′ (i.e., max (LSa, LSb, LSc) > τ̃ ′), then by time period τ̃ ′ at least two of

the three blocks must be mined and it is valid to force at least two of the decision

variables representing these three blocks to assume a value of 1 (i.e., mined).

More specifically, we use the latest starts algorithm to determine all single block,

pair-wise, and three-way block combination latest starts (LS ) for our three blocks

and then define the following:

• τ̃ ′′ = max (LSa, LSb, LSc)

• τ̃ ′ = max (LSa,b, LSa,c, LSb,c)

• τ̃ = LSa,b,c

We then use these three values (τ̃ , τ̃ ′, and τ̃ ′′) to generate our cuts.

If τ̃ is less than τ̃ ′, then the blocks that comprise the super-block formed by the

union of blocks a, b, and c must be accessed by a time period earlier than the latest

84



start times for any of the super-blocks formed by two-way combinations of blocks a,

b, and c. As a result, at least one of these three blocks must be removed by time

period τ̃ and an appropriate cut of the form wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1 can be generated.

If τ̃ ′ is less than τ̃ ′′, then any two blocks that comprise the super-block formed

by the union of blocks a, b, and c must be accessed by a time period earlier than the

latest start times for any of the blocks a, b, and c individually. As a result, at least

two of these three blocks must be removed by time period τ̃ ′ and an appropriate cut

of the form wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2 can be generated.

Determining if the Three-Way Latest Starts Cuts are Valid and Useful As

with two-way latest starts cuts, only those three-way cuts that are valid and useful

should be included in the model formulation. We must ensure that both types of cuts

we generate (≥ 2 and ≥ 1) are valid and useful.

To determine if our cuts of the form wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1 meet these criteria,

we must pay particular attention to the time index τ̃ . Based on the latest start of the

super-block formed by the union of blocks a, b, and c (LSa,b,c, which we call τ̃ ), we

know that by time period τ̃ all three blocks a, b, and c are holding up access to the

remaining blocks in the pit. Even if there exists a two-way combination of blocks a,

b, and c that does not need to be accessed until a later time period (i.e., its two-way

latest start is later than τ̃), then we still need to remove at least one block during

time period τ̃ to meet the minimum production and/or processing requirements. This

means that by time period τ̃ , at least one of these three blocks must be mined. So it

is valid to force at least one of these three blocks to be mined by time period τ̃ .

It may be practically useful to force at least one of these three blocks a, b, and c

to be accessed by time period τ̃ , because if the values of two of the blocks are known

to be not mined (i.e., say wa,τ̃ = wb,τ̃ = 0) then the value of the other block is also

known due to the cut (wc,τ̃ must equal 1 or the constraint represented by the cut

is violated). To determine the theoretical usefulness of the cut, however, we must
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empirically test each cut with specific data. We consider a cut theoretically useful if,

among other things, it renders infeasible the optimal solution to the LP relaxation of

the original integer programming formulation. For three-way latest starts cuts of the

form wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1, the cut is useful if the sum of the values of the variables

wa,τ̃ , wb,τ̃ , and wc,τ̃ in the optimal LP relaxation (we call them w̃a,τ̃ , w̃b,τ̃ , and w̃c,τ̃ )

is less than 1:

w̃a,τ̃ + w̃b,τ̃ + w̃c,τ̃ < 1

To determine if our cuts of the form wa,τ̃ ′ +wb,τ̃ ′ +wc,τ̃ ′ ≥ 2 are valid and useful,

we must pay particular attention to the time index τ̃ ′. Based on the latest latest

start of the super-block formed by the union of any two of the blocks a, b, and c

(max (LSa,b, LSa,c, LSb,c), which we call τ̃ ′), we know that by time period τ̃ ′ at least

two of the three blocks a, b, and c are holding up access to the remaining blocks

in the pit. Even if there exists a block among a, b, and c that does not need to

be accessed until a later time period (i.e., its latest start is later than τ̃ ′), then we

still need to remove at least two blocks during time period τ̃ ′ to meet the minimum

production and/or processing requirements. This means that by time period τ̃ ′, at

least two of these three blocks a, b, and c must be mined. So it is valid to force at

least two of these three blocks to be mined by time period τ̃ ′.

It may be practically useful to force at least two of these three blocks a, b,

and c to be accessed by time period τ̃ ′, because if the value of one of the blocks is

known to be not mined (i.e., say wa,τ̃ ′ = 0) then the values of the other two blocks

are also known due to the cut (wb,τ̃ ′ = wc,τ̃ ′ = 1 or the constraint represented by

the cut is violated). To determine the theoretical usefulness of the cut, however, we

must again resort to empirical tests. We consider a cut theoretically useful if, among

other things, it renders infeasible the optimal solution to the LP relaxation of the

original integer programming formulation. For three-way latest starts cuts of the form

wa,τ̃ ′ +wb,τ̃ ′ +wc,τ̃ ′ ≥ 2, the cut is useful if the sum of the values of the variables wa,τ̃ ′,
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wb,τ̃ ′, and wc,τ̃ ′ in the optimal LP relaxation (we call them w̃a,τ̃ ′, w̃b,τ̃ ′, and w̃c,τ̃ ′) is

less than 2:

w̃a,τ̃ ′ + w̃b,τ̃ ′ + w̃c,τ̃ ′ < 2

It is interesting to note that if τ̃ ′ ≮ τ̃ ′′ (which implies that τ̃ ′ = τ̃ ′′ because τ̃ ′ > τ̃ ′′

is impossible), then although the cut is valid (no optimal answers are precluded from

being examined), it is not useful (practically or theoretically). The reason it is not

useful is because τ̃ ′′ tells us the latest start time that any single block must be accessed,

so if τ̃ ′ = τ̃ ′′, then by time τ̃ ′ all of the single blocks must be mined due to their single

block latest start times. Essentially, this cut just tells us something we already know

because of each individual block’s latest start time.

Three-Way Latest Starts Cuts Algorithm

Assumptions We again use all assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• a = A block (from the set of blocks B) which adheres to the reasonable block

selection rule

• b = Another block (from the set of blocks B and not the same as a) which

adheres to the reasonable block selection rule

• c = Another block (from the set of blocks B and not the same as a or b) which

adheres to the reasonable block selection rule

• Ha,b = Set of blocks that cannot be mined (based on the sequencing constraints)

until blocks a and b are mined (including explicitly mining blocks a and b).

This set contains blocks a and b and the union of all the blocks in each of their

respective holding sets (i.e., Ha,b = Ha ∪Hb, since Ha contains block a and all
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the blocks in block a’s holding set and Hb contains block b and all the blocks

in block b’s holding set). As a result, no shared blocks between the holding sets

of blocks a and b are counted more than once in the super-block represented

by Ha,b.

• Ha,c = Set of blocks that cannot be mined (based on the sequencing constraints)

until blocks a and c are mined (including explicitly mining blocks a and c).

This set contains blocks a and c and the union of all the blocks in each of their

respective holding sets (i.e., Ha,c = Ha ∪ Hc, since Ha contains block a and all

the blocks in block a’s holding set and Hc contains block c and all the blocks

in block c’s holding set). As a result, no shared blocks between the holding sets

of blocks a and c are counted more than once in the super-block represented by

Ha,c.

• Hb,c = Set of blocks that cannot be mined (based on the sequencing constraints)

until blocks b and c are mined (including explicitly mining blocks b and c).

This set contains blocks b and c and the union of all the blocks in each of their

respective holding sets (i.e., Hb,c = Hb ∪Hc, since Hb contains block b and all

the blocks in block b’s holding set and Hc contains block c and all the blocks

in block c’s holding set). As a result, no shared blocks between the holding sets

of blocks b and c are counted more than once in the super-block represented

by Hb,c.

• Ha,b,c = Set of blocks that cannot be mined (based on the sequencing con-

straints) until blocks a, b, and c are mined (including explicitly mining blocks

a, b, and c). This set contains blocks a, b, and c and the union of all the blocks

in each of their respective holding sets (i.e., Ha,b,c = Ha ∪ Hb ∪ Hc, since Ha

contains block a and all the blocks in block a’s holding set, Hb contains block

b and all the blocks in block b’s holding set, and Hc contains block c and all

the blocks in block c’s holding set). As a result, no shared blocks between the

88



holding sets of blocks a, b, and c are counted more than once in the super-block

represented by Ha,b,c.

• LSa = Latest start time for block a (based on either the minimum processing

constraint or the minimum production constraint)

• LSb = Latest start time for block b (based on either the minimum processing

constraint or the minimum production constraint)

• LSc = Latest start time for block c (based on either the minimum processing

constraint or the minimum production constraint)

• τ̃ ′′ = max (LSa, LSb, LSc)

• LSa,b = Latest start time for the set of blocks contained in Ha,b (based on either

the minimum processing constraint or the minimum production constraint)

• LSa,c = Latest start time for the set of blocks contained in Ha,c (based on either

the minimum processing constraint or the minimum production constraint)

• LSb,c = Latest start time for the set of blocks contained in Hb,c (based on either

the minimum processing constraint or the minimum production constraint)

• τ̃ ′ = max (LSa,b, LSa,c, LSb,c)

• τ̃ = LSa,b,c = Latest start time for the set of blocks contained in Ha,b,c (based

on either the minimum processing constraint or the minimum production con-

straint)

Inputs

• A set of blocks B
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• Minimum processing requirement per time period (in tons of ore) and minimum

production requirement per time period (in tons of material). Note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized).

Outputs

• Valid cuts of the form:

wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1

and

wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2

Algorithm

For each three-way combination of blocks a ∈ B, b ∈ B, and c ∈ B in which

each block adheres to the reasonable block selection rule with respect to the

minimum production requirement do:

1a. Determine the latest start time for block a (i.e., LSa) based on the mini-

mum production capacity

2a. Determine the latest start time for block b (i.e., LSb) based on the mini-

mum production capacity

3a. Determine the latest start time for block c (i.e., LSc) based on the mini-

mum production capacity

4a. Create the set of blocks that represents the union of the holding sets for

blocks a and b (i.e., Ha,b) and determine the latest start time for this set

(i.e., LSa,b) based on the minimum production capacity

5a. Create the set of blocks that represents the union of the holding sets for

blocks a and c (i.e., Ha,c) and determine the latest start time for this set

(i.e., LSa,c) based on the minimum production capacity
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6a. Create the set of blocks that represents the union of the holding sets for

blocks b and c (i.e., Hb,c) and determine the latest start time for this set

(i.e., LSb,c) based on the minimum production capacity

7a. Create the set of blocks that represents the union of the holding sets for

blocks a, b, and c (i.e., Ha,b,c) and determine the latest start time for this

set (i.e., τ̃ = LSa,b,c) based on the minimum production capacity

8a. Determine the latest that any two-block set must be accessed:

τ̃ ′ = max (LSa,b, LSa,c, LSb,c)

9a. Determine the latest that any single block must be accessed:

τ̃ ′′ = max (LSa, LSb, LSc)

10a. If τ̃ < τ̃ ′ then create a cut of the form:

wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1

11a. If τ̃ ′ < τ̃ ′′ then create a cut of the form:

wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2

For each three-way combination of blocks a ∈ B, b ∈ B, and c ∈ B in which

each block adheres to the reasonable block selection rule with respect to the

minimum processing requirement do:

1b. Determine the latest start time for block a (i.e., LSa) based on the mini-

mum processing capacity

2b. Determine the latest start time for block b (i.e., LSb) based on the mini-
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mum processing capacity

3b. Determine the latest start time for block c (i.e., LSc) based on the mini-

mum processing capacity

4b. Create the set of blocks that represents the union of the holding sets for

blocks a and b (i.e., Ha,b) and determine the latest start time for this set

(i.e., LSa,b) based on the minimum processing capacity

5b. Create the set of blocks that represents the union of the holding sets for

blocks a and c (i.e., Ha,c) and determine the latest start time for this set

(i.e., LSa,c) based on the minimum processing capacity

6b. Create the set of blocks that represents the union of the holding sets for

blocks b and c (i.e., Hb,c) and determine the latest start time for this set

(i.e., LSb,c) based on the minimum processing capacity

7b. Create the set of blocks that represents the union of the holding sets for

blocks a, b, and c (i.e., Ha,b,c) and determine the latest start time for this

set (i.e., τ̃ = LSa,b,c) based on the minimum processing capacity

8b. Determine the latest that any two-block set must be accessed:

τ̃ ′ = max (LSa,b, LSa,c, LSb,c)

9b. Determine the latest that any single block must be accessed:

τ̃ ′′ = max (LSa, LSb, LSc)

10b. If τ̃ < τ̃ ′ then create a cut of the form:

wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1
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11b. If τ̃ ′ < τ̃ ′′ then create a cut of the form:

wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2

Output all generated cuts

Relative Dominance of Three-Way Latest Starts Cuts As with two-way cuts,

the time index (τ̃ or τ̃ ′) in our generated cuts tells us about the relative dominance

of different cuts. Cuts with an earlier time index dominate cuts (involving the same

blocks) with a later time index.

Three-way cuts concern themselves with another dominance issue though; the

value to the right of the inequality. Take the following two potential cuts:

• wa,2 + wb,2 + wc,2 ≥ 1

• wa,2 + wb,2 + wc,2 ≥ 2

The first means that at least one of the three blocks a, b, and c must be mined

by time period 2, while the second means that at least two of these three blocks

must be mined by time period 2. In this case, the latter cut dominates the former.

The reason for this is that the latter is more restrictive than the former. The latter

requires that two blocks be mined, while the former requires only one of the blocks

be mined. Our three-way earliest starts cuts algorithm accounts for this dominance

and only generates the dominant cut for any set of blocks in the same time period

(assuming such a cut is valid and useful).

Three-Way Latest Starts Cuts Numerical Example Looking at our two-

dimensional example, we use blocks 9, 11, and 13 to create a three-way latest starts

cut based on the minimum production capacity (see Figure 4.7).

For this example, we assume that:
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• Block a is represented by block 9 in the figure, block b is represented by block

11 in the figure, and block c is represented by block 13 in the figure

• Each block contains 10 tons of material (i.e., nb = 10 for each block a, b, and

c)

• The minimum production requirement is 20 tons per time period (for simplicity,

we only use production bounds for this example)

Recall that our decision variables are defined as wbt, where the b index identifies the

particular block (blocks 9, 11, and 13 in the figure above for this example) and the

t index identifies the time period by which the block is extracted. We now use the

algorithm to generate a three-way latest starts cut based on the minimum production

requirement:

1. Determine the latest start time for block a:

LSa = 9

2. Determine the latest start time for block b:

LSb = 9

3. Determine the latest start time for block c:

LSc = 9

Figure 4.7. Three-Way Latest Starts Cuts Numerical Example. This example depicts
the results of creating a three-way latest starts cut with blocks 9, 11, and 13.
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4. Create the set of blocks that represents the union of the holding sets for blocks

a and b and determine this set’s latest start time:

Ha,b = Ha ∪ Hb = {9, 15, 16, 17} ∪ {11, 17, 18, 19} = {9, 11, 15, 16, 17, 18, 19}

LSa,b = 8

5. Create the set of blocks that represents the union of the holding sets for blocks

a and c and determine this set’s latest start time:

Ha,c = Ha ∪Hc = {9, 15, 16, 17}∪ {13, 19, 20, 21} = {9, 13, 15, 16, 17, 19, 20, 21}

LSa,c = 7

6. Create the set of blocks that represents the union of the holding sets for blocks

b and c and determine this set’s latest start time:

Hb,c = Hb ∪ Hc = {11, 17, 18, 19} ∪ {13, 19, 20, 21} = {11, 13, 17, 18, 19, 20, 21}

LSb,c = 8

7. Create the set of blocks that represents the union of the holding sets for blocks

a, b, and c and determine this set’s latest start time:

Ha,b,c = Ha ∪ Hb ∪ Hc = {9, 15, 16, 17} ∪ {11, 17, 18, 19} ∪ {13, 19, 20, 21} =

{9, 11, 13, 15, 16, 17, 18, 19, 20, 21}

τ̃ = LSa,b,c = 6

8. Determine the latest that any two-block set can be accessed:

τ̃ ′ = max (LSa,b, LSa,c, LSb,c) = max(8,7,8) = 8

9. Determine the latest that any single block can be accessed:

τ̃ ′′ = max (LSa, LSb, LSc) = max(9,9,9) = 9

10. Since τ̃ < τ̃ ′ we can create a cut of the form:

wa,τ̃ + wb,τ̃ + wc,τ̃ ≥ 1 ⇒ w9,6 + w11,6 + w13,6 ≥ 1
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11. Since τ̃ ′ < τ̃ ′′ we can create a cut of the form:

wa,τ̃ ′ + wb,τ̃ ′ + wc,τ̃ ′ ≥ 2 ⇒ w9,8 + w11,8 + w13,8 ≥ 2

This means that by the end of time period 6, at least one of the three blocks repre-

sented by blocks 9, 11, and 13 in the figure above must be mined. Also, by the end

of time period 8, at least two of the three blocks represented by blocks 9, 11, and 13

in the figure above must be mined.

4.3.6 Cuts Involving More than Three Blocks

The general ideas we present in our two-block and three-block cut generating

algorithms can be extended to create cuts of more than three blocks. In fact, we can

generate cuts involving as many blocks as can be both produced and processed in any

given time period. However, creating cuts with more than three blocks gets harder

and more time consuming. As the number of blocks involved in the cut increases, the

number of possible block combinations that must be investigated grows exponentially.

This makes it harder to find these cuts yet still requires that they be worth the time

investment with respect to the reduction in overall problem solve time. Our empirical

evidence suggests that cuts become less effective as the number of blocks they contain

increases.

4.3.7 Using the by vs at Formulation in Cut Generation

We employ the by formulation to create our cuts. It is worth mentioning that

if we use the alternative at formulation, then the cuts we describe above are not

sufficient to produce the desired effects. For instance, say a valid and useful cut for

the by formulation is:

w3,3 + w4,3 ≤ 1 (4.1)

Using the by formulation of the problem, the variable wbt represents block b being

mined by time period t. Therefore this one constraint implies that by time period
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3, at most one of the blocks 3 or 4 can be mined. The by formulation implicitly

accounts for all time periods up to and including the time period represented by the t

subscript, so the constraint in equation (4.1) above implicitly addresses what occurs

in time periods 1 and 2, along with time period 3 (which is the t subscript). However,

if we use the at formulation, the constraint in equation (4.1) above only requires that

blocks 3 and 4 cannot both be mined at time period 3. For time periods later than

time period 3, this constraint suffices, but for time periods 1 and 2, there is a problem

with the formulation.

In order to get the same result with the at formulation, we need to pursue

one of two approaches. Either we require a set of three constraints or a cut involving

summation. Recall that the decision variable in the at formulation is ybt, representing

block b being mined at time period t.

A set of three constraints of the form:

y3,1 + y4,1 ≤ 1

y3,2 + y4,2 ≤ 1 (4.2)

y3,3 + y4,3 ≤ 1

accomplishes the same thing as the constraint in equation (4.1). These constraints

limit the removal of blocks 3 and 4 to at most one at time periods 1, 2, and 3. Since

the at formulation includes constraints that permit blocks to be mined no more than

once during the time horizon via constraints (3.1) and (3.2), these three constraints

generate the same cut as equation (4.1). As the t index gets closer to the end of the

time horizon (i.e., approaches T ), the number of constraints required to create a cut

using the at formulation increases. With the by formulation, however, we only need

one constraint for each cut, regardless of the t index on the constraint.
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Another approach involves using summation notation. A constraint of the form:

3
∑

u=1

y3,u +

3
∑

u=1

y4,u ≤ 1

suffices to define the constraint represented in equation (4.1). Here again, as the t

index gets close to the end of the time horizon, the number of terms being summed

increases accordingly. In general, using the at formulation adds more complexity

to the generation of valid and useful cuts, thus further justifying our use of the by

formulation.

4.4 Lagrangian Relaxation Methods

Lagrangian relaxation methods attempt to move complicating constraints to the

objective function, thus leaving a set of constraints that are relatively easily adhered

to. The relaxed constraints are dualized and added to the objective function with fixed

penalties (i.e., Lagrange multipliers usually denoted by λ’s with various subscripts as

indices).

In the block sequencing problem, the side constraints that enforce minimum

and maximum operational bounds tend to complicate the otherwise simple structure

of the problem and are therefore considered complicating constraints. These side

constraints include:

• Average grade requirements

• Mine production capacity constraints

• Mill processing capacity constraints

With respect to the by formulation presented in Section 3.3.2, these side constraints

correspond to constraints (3.11), (3.12), (3.13), and (3.14), respectively (note that

the average grade constraints are written as two separate constraints for formatting
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reasons). Because we assume a fixed cutoff grade in our model, we do not include

the average grade constraints (constraints (3.11) and (3.12)) in our formulation. We

move the production and processing constraints to the objective function and add

weights (i.e., Lagrange multipliers) to discourage violations.

We introduce Lagrange multipliers indexed by constraint type, i.e., minimum

processing, minimum production, maximum processing, and maximum production

(corresponding to the i index) and time period (corresponding to the t index). We

call our Lagrangian multipliers λit (i = 1 . . . 4, t = 1 . . . T ). The resultant Lagrangian

relaxation formulation is:

max
∑

b∈B

∑

t∈T

cbt (wbt − wb,t−1) +
∑

t∈T

λ1t

(

∑

b∈B

nb (wbt − wb,t−1) − E

)

+
∑

t∈T

λ2t

(

E −
∑

b∈B

nb (wbt − wb,t−1)

)

+
∑

t∈T

λ3t

(

∑

b∈B

rb (wbt − wb,t−1) − C

)

+
∑

t∈T

λ4t

(

C −
∑

b∈B

rb (wbt − wb,t−1)

)

(4.3)

subject to: wb,t−1 ≤ wbt ∀ b, t > 1 (4.4)
∑

t∈T

(wbt − wb,t−1) = 1 ∀ b ∋ arg max Tb ≤ |T | (4.5)

∑

t∈T

(wbt − wb,t−1) ≤ 1 ∀ b ∋ arg maxTb > |T | (4.6)

wbt ≤ wb′t ∀ b ∈ B, b′ ∈ Bb, t (4.7)

wbt ∈ {0, 1} ∀ b, t (4.8)

Notice that the side constraints (3.13) and (3.14) are now in the objective function,
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(4.3), each prefixed by its own Lagrange multiplier, λit. This leaves only five sets

of constraints in the problem, thus significantly simplifying the resulting problem’s

structure.

Not all of the side constraints must be moved to the objective function; we can

selectively choose which ones to move. Because there are four side constraints involved

(a minimum and maximum production constraint and a minimum and maximum

processing constraint), there are 16 combinations of scenarios that we investigate

with respect to dualizing these constraints. The simplest scenarios involve moving

only one of these constraints (since there are four side constraints, there are four such

scenarios). There are six scenarios which move two of these constraints, four scenarios

that move three of these constraints, and lastly one scenario that moves all four of

these constraints to the objective function. The scenario that moves none of these

constraints to the objective function is our monolith.

4.4.1 Basic Idea Behind the Lagrangian Relaxation Method

Implementing the Lagrangian relaxation procedure in AMPL and solving it with

CPLEX involves the use of a script to control execution of the program between the

monolith and the Lagrangian relaxation subproblem. Our iterative process attempts

to tighten lower and upper bounds on the optimal objective function value by succes-

sively solving the Lagrangian relaxation subproblem of the monolith and using that

solution (if it is feasible) in the monolith to determine an optimal extraction schedule

for that iteration.

Lagrangian relaxation starts by solving the linear programming (LP) relaxation

of the monolith and using that objective function value as an initial upper bound

on the monolith objective function value. Subsequent iterations solve the Lagrangian

relaxation subproblem of the monolith. The optimal decision variable values from the

Lagrangian relaxation subproblem are simply inserted into the monolith (assuming

they are feasible in the monolith) to derive a new monolith objective function value.
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If the objective function value for the current iteration’s Lagrangian relaxation sub-

problem, z∗LR, is less than the incumbent upper bound for the monolith, then we

update the upper bound with z∗LR. If the current iteration’s monolith objective func-

tion value, z∗mono, is higher than the incumbent lower bound for the monolith, then

we update the lower bound with z∗mono. Before the next iteration, the Lagrangian

relaxation procedure updates the Lagrangian multipliers based on the degree of vi-

olation incurred by each of the dualized constraints in the monolith. We terminate

the procedure after either reaching an iteration limit or achieving a small enough gap

between the Lagrangian procedure’s lower and upper bounds.

As mentioned above, to obtain the initial upper bound, we solve the LP-relaxation

of the monolith. In our case, this upper bound is actually quite tight, especially as

the data sets get bigger. Since our problem closely resembles a constrained knap-

sack, we look at some characteristics of this class of problems to understand this

phenomenon. With bigger data sets, we have the ability to use more heterogeneous

left-hand-side coefficients to fill our knapsack capacity constraints. Two very sim-

ple constrained knapsack problems help illustrate this principle. First, examine the

following problem:

max 10x1 + 10x2 + 10x3 (4.9)

subject to : 10x1 + 10x2 + 10x3 ≤ 25 (4.10)

xi ∈ {0, 1} (4.11)

The optimal LP-relaxation solution is xLP
1 = 1, xLP

2 = 1, xLP
3 = 1

2
, resulting in an

optimal objective function value of z∗LP = 25. The optimal integer programming (IP)

solution is xIP
1 = 1, xIP

2 = 1, xIP
3 = 0, resulting in an optimal objective function

value of z∗IP = 20. For this problem, the LP-relaxation does not provide a very strong
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upper bound. We now present a second problem:

max 3x1 + 5x2 + 4x3 + 7x4 + 8x5 (4.12)

subject to : 3x1 + 5x2 + 4x3 + 7x4 + 8x5 ≤ 25 (4.13)

xi ∈ {0, 1} (4.14)

The optimal LP-relaxation solution for this problem is xLP
1 = 1

3
, xLP

2 = 1, xLP
3 = 1,

xLP
4 = 1, xLP

5 = 1, resulting in an optimal objective function value of z∗LP = 25.

The optimal IP solution is xIP
1 = 0, xIP

2 = 1, xIP
3 = 1, xIP

4 = 1, xIP
5 = 1, resulting

in an optimal objective function value of z∗IP = 24. For this second problem, the

LP-relaxation provides a very strong upper bound. The second problem typifies our

larger data sets; they contain more data that is more heterogeneously distributed

with respect to total material and valuable ore content. As such, for our larger data

sets, the initial LP-relaxation to the monolith provides a very good upper bound.

The key to success when using the Lagrangian relaxation method is selecting the

correct constraints(s) to dualize and then properly setting the values of the multi-

pliers for these dualized constraints (the λit’s, in our case). Selecting inappropriate

constraints to dualize may not lead to a simplified Lagrangian relaxation subproblem

or might result in Lagrangian relaxation subproblem solutions that are never feasible

in the monolith. If the dualized multipliers are too high, then the constraints with

which they are associated may have too much slack and the solution may be sub-

optimal. On the other hand, if these multipliers are too low, then their associated

constraints may be violated (since the cost of violation isn’t high enough) and the

solution may be infeasible for the monolith. There are various methods employed

in the literature to update the Lagrangian multipliers between successive iterations,

some of which are discussed in Section 4.4.2.

Among the most troublesome aspects of Lagrangian relaxation is the problem of

infeasibility. Generally speaking, the Lagrangian relaxation subproblem has no diffi-
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culty finding a solution; however, that solution may not be feasible in the monolith.

Because some constraints from the monolith are dualized in the Lagrangian relax-

ation subproblem, the solution to the Lagrangian relaxation subproblem may allow

for constraint violations, especially if the cost of doing so (based on the Lagrangian

multiplier values) is low. Despite attempts at modifying the Lagrangian multiplier

values to discourage constraint violations, there may be no way to obtain a feasible

solution to the monolith problem, resulting in what is known as the “condition of

gaps” (Dagdelen 1985, pp. 99-100). The mathematical explanation for the existence

of these gaps has to do with the fact that the mapping of solutions between the

Lagrangian relaxation subproblem and the monolith may not be onto (Everett 1963):

The Lagrange multiplier method therefore generates a mapping of the

space of lambda vectors (components λk, k = 1, ..., n) into the space of

constraint vectors (components ck, k = 1, ..., n [where ck represent the

constraints in the monolith]). There is no a priori guarantee, however,

that this mapping is onto—for a given problem there may be inaccessible

regions (called gaps) consisting of constraint vectors that are not generated

by any λ vectors. (p. 407)

As Fisher points out (1985, p. 18) “In my experience, it is rare in practice that

the Lagrangian solution will be feasible in the original problem. However, it is not

uncommon that the Lagrangian solution will be nearly feasible and can be made

feasible with some minor modifications.” Our experience concurs with this statement

and we find that we rarely obtain a Lagrangian relaxation subproblem solution that is

feasible for the monolith, especially as the number of constraints we dualize increases.

However, following Fisher’s notion that these infeasible solutions can be made feasible,

we create a feasing routine that endeavors to do exactly this.

Dagdelen (1985) solves the block scheduling problem by Lagrangian decomposi-

tion techniques. He employs subgradient methods to modify the Lagrangian multipli-
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ers corresponding to the side constraints consisting of blending and capacity require-

ments in his problem formulation. He further reduces the resulting multi-time period

Lagrangian relaxation subproblem into a series of efficiently-solvable single time pe-

riod problems. He exploits the network structure of the sequencing constraints in

these single time period problems and uses adjusted block values to solve each of

these problems as an ultimate pit limits problem via the Lerchs-Grossman algorithm,

ultimately creating a block extraction schedule for the entire ore body.. Dagdelen

overcomes the “condition of gaps” by allowing the operational side constraints which

he dualizes in the Lagrangian relaxation subproblem to be violated by “ǫ” in the

primal (i.e., the monolith). Doing this means that the constraints in the formulation

of his monolith are elastic, an idea we do not employ. Without this allowable ǫ error,

his procedure would continue to attempt to create a nonexistent feasible solution and

would result in an endless loop. As a result, the constraint would never be met and

a feasible solution to the monolith would not be found.

Kawahata (2006) expands on the Lagrangian relaxation procedure developed by

Dagdelen (1985). His methodology uses two Lagrangian relaxation subproblems, one

to represent the most aggressive production scheduling case (i.e., working at the maxi-

mum production bound) and the other to represent the most conservative production

sequencing case (i.e., working at the minimum production bound), to restrict the

monolith’s optimal solution space. The premise is that the decision variable values

from the solutions to these two Lagrangian relaxation subproblems eliminate vari-

ables from the monolith, thus significantly speeding up solve times. However, he

still contends that “a gap problem cannot be avoided as long as the Lagrangian re-

laxation method is applied to solve the production scheduling problem.” (2006, p.

64) We show that there are cases in which the optimal decision variable values to the

Lagrangian relaxation subproblem are feasible in the monolith. When the optimal de-

cision variable values to the Lagrangian relaxation subproblem are not feasible in the

monolith, we attempt to make them feasible via our feasing routine, thus eliminating

104



the gap problem.

4.4.2 Implementation of the Lagrangian Relaxation Method for our Prob-

lem

Unlike Dagdelen (1985) and Kawahata (2006), we treat our constraints as hav-

ing rigid right-hand-sides; thus, we do not allow constraint violations. Although more

realistic, this means we are plagued by an infeasible monolith solution once the La-

grangian relaxation subproblem generates a potential solution. As such, we endeavor

not only to intelligently update our multiplier values, but also to employ heuristics

to force our solutions to be feasible. The success of our feasing routine depends on

the characteristics of the data, but ultimately its use aids in resolving the infeasibility

issues with which the Lagrangian relaxation procedure is beset.

Steps in the Lagrangian Relaxation Technique The Lagrangian relaxation

technique we employ consists of an iterative process which attempts to place lower

and upper bounds on our monolith’s optimal objective function value. The steps in

the procedure are:

1. Solve the LP relaxation of the monolith – this serves as the initial upper bound

(UB).

2. Solve the Lagrangian relaxation subproblem (LRSP).

If the LRSP’s optimal objective function value is less than UB, then update

UB.

3. Insert the LRSP’s optimal decision variable values into the monolith (assuming

they are feasible for the monolith).

If the monolith’s optimal objective function value is greater than LB, then

update LB.
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4. Update the Lagrangian multipliers (the λit’s).

5. Return to step 2 unless:

• iteration limit is reached

• acceptable LB-UB gap is reached

Successfully implementing the Lagrangian relaxation procedure is dependent on

many issues. First and foremost, we need good initial values for the Lagrangian

multipliers. Then we must have an efficient and effective means to update these

Lagrangian multipliers between iterations. Lastly, we must have a method for gener-

ating feasible solutions for our monolith (if the optimal decision variable values from

the Lagrangian relaxation subproblem are not feasible in the monolith). We address

all of these issues and propose ways of resolving them to ensure that the Lagrangian

relaxation procedure converges to an acceptable solution quickly.

Scenarios Our model formulation consists of four sets of side constraints: 1) mini-

mum production, 2) minimum processing, 3) maximum production, and 4) maximum

processing. As mentioned in Section 4.4, these four constraints result in 15 scenarios

representing the various one-way, two-way, three-way, and four-way combinations to

dualize them for use in the Lagrangian relaxation procedure. Generally speaking, the

more constraints we dualize, the simpler the structure of the resulting Lagrangian

relaxation subproblem becomes. Dualizing just one constraint simplifies the mono-

lith’s constraint set only slightly, because there are still three other complicating side

constraints with which the solver must contend. Dualizing all four constraints means

that the resulting Lagrangian relaxation subproblem has a simplified structure that

solves quickly.

Unfortunately, as more constraints are dualized in the Lagrangian relaxation

subproblem, more constraints are violated in the monolith. If only one constraint

is dualized, then the resulting solution from the Lagrangian relaxation subproblem
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still has three other constraints that help bound the solution and make it feasible

(or near feasible) for the monolith. When all four constraints are dualized, there

is nothing besides the sequencing constraints (constraints (4.4)) and the four other

auxiliary constraints (constraints (4.5), (4.6), (4.7), and (4.8)) to force the Lagrangian

relaxation subproblem’s solution to create a feasible solution for the monolith. As a

result, the Lagrangian relaxation subproblem’s solution is generally highly infeasible

in the monolith in the sense that many constraints are violated and the extent of

these violations is large.

Using our feasing routine we can force a feasible solution if the infeasibility is

not too great (i.e., the number of infeasible constraints is low and/or the extent to

which they are violated is not too great). Discouragingly, if the infeasibility is great,

even with our feasing routine, we cannot generate a feasible solution for the monolith.

The latter is what frequently happens if we dualize three or four of the constraints.

Additionally, the actual amount of time spent conducting the feasing routine becomes

excessive, thus negating all the time savings achieved in solving the much simplified

Lagrangian relaxation subproblem. Empirically, we see the best results in terms of

quickly converging to an acceptable answer by dualizing only one or two constraints

and then using our feasing routine on the Lagrangian relaxation subproblem’s solution

to create a feasible solution for the monolith.

Multiplier Maximum Values Generally, the only constraints imposed on the

multipliers used in the Lagrangian relaxation method are that they be non-negative.

Essentially, the higher the multipliers’ values, the more penalty there is to the ob-

jective function value for violating the multiplier’s associated constraint. However,

there is a high enough multiplier value above which the associated dualized con-

straint is not violated because the penalty to the objective function value is greater

than the penalty incurred by violating the associated dualized constraint. Raising the

constraint’s multiplier value beyond this maximum results in over-penalizing the ob-
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jective function value, leading to a lower objective function and a poorer lower bound.

Excessively punishing the objective function with multiplier values that are too high

leads to wasted iterations, since the multipliers need to be adjusted downward over

the course of subsequent iterations. Therefore, we use information from the problem

formulation to set maximum multiplier values.

When dualizing the maximum production and/or processing constraints, the

multipliers’ upper bounds equal the maximum profit per ton that any accessible

block could possibly achieve. This value is the maximum profit because that is the

most we would be willing to pay to violate the constraint. Any value higher than

this is excessive punishment for violating the constraint. We calculate this value by

determining the maximum ratio between the discounted block value and the total

tonnage of the block

(

max
{b,t}

(

cbt

nb

)

)

, being sure only to include those blocks that are

actually accessible by time period t (based on the block’s earliest start time).

On the other hand, when dualizing the minimum production and/or processing

constraints, the multipliers’ upper bounds equal the most profit per ton foregone for

any accessible block. Again, this value is the most we would be willing to pay to

violate the constraint, but in this case it represents how much we would be willing to

pay to not have to mine undesirable blocks. We calculate this value by determining the

minimum ratio between the discounted block value and the total tonnage of the block
(

min
{b,t}

(

cbt

nb

)

)

, again being sure only to include those blocks that are accessible by time

period t (based on the block’s earliest start time). If all the blocks being investigated

are ore blocks, then this value is some positive number and the minimum processing

and production constraints are never violated. As such, the maximum value for the

multipliers should be 0 since we don’t need to punish the objective for a constraint

that is never violated.

Multiplier Seeding The ultimate goal of the Lagrangian relaxation procedure is

to derive an optimal solution to the Lagrangian relaxation subproblem that is also
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feasible in the monolith and approaches an optimal solution for the monolith. To

do this, we must discern optimal multiplier values. Through an iterative process,

we adjust the multiplier values based on their effect on their respective dualized

constraints in the monolith (i.e., the amount of slack that the dualized constraints

contain as a result of the solution from the Lagrangian relaxation subproblem). Since

with each iteration we are refining an educated guess, the initial value we use to

seed the multipliers can have a dramatic effect on the number of iterations we must

conduct in order to generate a solution within an acceptable margin or error.

Although zero may be used to seed the multiplier values, we find that this value

is not very helpful. Essentially, seeding the multipliers with zero means that there is

no punishment in the objective function for violating the associated constraints. Since

our objective function is based on a net present value analysis, such a scheme results in

many ore blocks being mined at their earliest possible times, thus severely violating

the maximum production and processing constraints. Because of these constraint

violations, the multiplier values must be increased, and during the early iterations

of the Lagrangian relaxation procedure, the multipliers are constantly alternating to

correct under utilizing and violating the dualized constraint, creating a structure that

is not feasible for the monolith. Our experience shows that an initial value of 1 works

much better for our problem formulation. Seeding the multipliers with a value of 1

means that we incur some degree of punishment for violating a constraint, but that

punishment is not overly severe.

Another scheme is to seed the multipliers with the dual values from their as-

sociated constraints in the LP-relaxation. We can generate these dual values when

we solve the LP-relaxation of the monolith to create our initial upper bound for the

problem. However, for large data sets, the time spent finding these dual values is

not trivial. Additionally, if the constraints are not tight in the LP relaxation of the

monolith, the resultant duals are zero, which means that the dualized constraints are

not punished at all (see discussion above). Overall, our experience does not indicate

109



that seeding multipliers with their duals is very useful.

Multiplier Updating Routines As mentioned in Section 4.4.1, there are various

methods available to update the multiplier values. Among the most common is one

called the subgradient method. As Fisher (1981, p. 7) points out, “The subgradient

method is a brazen adaptation of the gradient method in which gradients are replaced

by subgradients.” Given an initial value for the multiplier, λ0
it, generate a sequence

of multipliers using the rule:

λk+1
it = λk

it + tk(Axk − b) ∀ i, t, k

where tk is a positive scalar representing the step size at iteration k and the term

(Axk − b) represents the slack in the dualized constraint at iteration k as a result

of finding the optimal solution to the Lagrangian relaxation subproblem at iteration

k. In the same paper, Fisher points out two other popular approaches for updating

Lagrangian multipliers: 1) those employing the simplex method via column generation

techniques and 2) multiplier adjustment methods. The former do not see much use

because they tend to converge slowly and are rather difficult to program. The latter,

which are problem-specific, may afford great benefits if used properly.

To solve our problem via the Lagrangian relaxation method, we use the subgra-

dient method (which we call the traditional approach to multiplier updating) and also

attempt some multiplier adjustment methods employing either a percentage change

(i.e., we increase or decrease the multiplier by a fixed percentage at each iteration) or

the traditional approach with a historical look-back (i.e., we set the new multiplier

value equal to the weighted average of its value in the previous iteration as well as

what it traditionally would be in the current iteration).

The percentage change multiplier adjustment method works as follows: If an

inequality constraint is satisfied, then the multiplier value encourages the objective
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function to utilize slack in this constraint. On the other hand, if the constraint is not

met, then the value of the multiplier for that constraint is raised by a fixed percentage

as a way of discouraging the Lagrangian relaxation subproblem’s objective function

from violating that constraint.

The traditional approach with a historical look-back initially uses the subgradi-

ent method described above to create a new multiplier value. However, the resultant

multiplier value is not used in its entirety. A fixed percentage of the previous it-

eration’s multiplier value is included along with a fixed percentage of the current

iteration’s multiplier value (calculated via the subgradient method) to create the up-

dated multiplier value for the current iteration:

λk
it ⇐ (curr%) λk

it + (hist%) λk−1
it ∀ i, t, k

For example, 75% of the current iteration’s multiplier and 25% of the previous iter-

ation’s multiplier may be used to create the current iteration’s multiplier value. As

a result, this method employs information from the previous iteration to help pre-

vent large changes in multiplier values, especially in the first few iterations of the

Lagrangian relaxation method.

Held, Wolfe, and Crowder (1974) present another multiplier updating scheme

based on four different scaling parameters; however, we do not find their methods

very promising.

4.4.3 Feasing Routines

Fisher’s idea of modifying an infeasible solution so that it becomes feasible is

what leads us to propose a feasing routine for the open pit scheduling problem. Given

enough spare blocks not in the current Lagrangian relaxation subproblem’s optimal

solution (i.e., blocks that are not mined in the current optimal solution), we can

selectively add or remove blocks from the optimal Lagrangian relaxation subproblem’s
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solution to create a solution that is feasible for the monolith. When infeasibilities

occur because of not meeting minimum production and/or processing bounds, we

simply add the best blocks to the solution to ensure that these lower bounds are met.

On the other hand, when infeasibilities occur because of exceeding the maximum

production and/or processing bounds, we remove the best blocks from the solution

to ensure that the upper bounds are met. In both cases, by best we mean that

we pick blocks that help us meet the various constraint bounds using as few blocks

as possible and avoid violating other constraint bounds in the process. We start

the feasing process in the first time period with a constraint violation and then

check all subsequent time periods to ensure that our feasing actions in previous time

periods do not have adverse affects. If our feasing actions from previous time periods

cause subsequent time period’s constraints to become infeasible, we use our feasing

routine on these later time periods also. Once our feasing routine is complete, we

ensure that the solution to the Lagrangian relaxation subproblem is feasible for all

time periods before passing the decision variable values back to the monolith. Our

empirical experience shows that employing this feasing routine significantly increases

our ability to use the Lagrangian relaxation method and determine feasible solutions

for the monolith (see Section 5.3.2 for results).

When using the feasing routine to eliminate infeasibilities due to violating the

maximum processing or maximum production, by best, we mean removing those

blocks that best help meet the maximum constraints while not violating the mini-

mum constraints or the sequencing constraints in the process. Our goal is to generate

a feasible solution for the monolith. For example, if our current Lagrangian relax-

ation subproblem solution violates maximum production constraints, then the feasing

routine finds the heaviest waste block(s) to remove. Removing waste blocks ensures

that we do not violate the maximum processing constraints (because waste blocks

have no processable material in them). Picking the heaviest waste blocks means that

we do not spend extra time searching for more blocks than necessary in order to
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meet the maximum production constraint. To ensure that we do not violate any of

the sequencing constraints, we remove blocks from among those that represent the

bottom-most mined blocks in the current time period’s optimal solution to the La-

grangian relaxation subproblem. By remove we mean that we mine the block one

time period later, unless we are at the end of the time horizon, in which case the

block is not mined at all. Selecting a correct block in the current time period whose

extraction we shift to one time period later ensures that we do not adversely affect

the sequencing constraints for subsequent time periods. Also, we are careful not to

isolate a block on any level, thus violating the sixth sequencing constraint. If our

actions result in leaving a block completely alone on a given level, we also move that

block to the next time period so that the we do not violate the sixth sequencing

constraint. The example in Section 4.4.3 clarifies this concept.

When we conduct the feasing routine to remove infeasibilities as a result of

minimum processing or minimum production constraint violations, by best we mean

adding blocks that best help meet the minimum constraints without violating the

maximum constraints in the process. For example, if the current Lagrangian re-

laxation subproblem solution violates the minimum processing constraints, then the

feasing routine finds the heaviest ore block(s) to add. Adding ore blocks ensures

that we make the violated minimum processing constraint feasible while not adding

useless waste blocks that may potentially create a violation of the maximum produc-

tion constraint. Again, picking the heaviest ore blocks ensures that we do not search

for more blocks than necessary to satisfy the minimum processing constraint. The

blocks are added at the top of the pit, picking among those blocks that are not in the

optimal solution by the current time period (i.e., we mine unmined blocks that are at

the highest level in the pit). Adding blocks at the top of the pit guarantees that we

do not violate the sequencing constraints and preserves the feasibility of the solution

with respect to the sequencing constraints when used in the monolith. Again, we

ensure that no blocks are isolated on any level so that we do not violate the sixth
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sequencing constraint. If our added block is isolated on a given level, then we also add

a neighbor block to preclude violating the sixth sequencing constraint. We terminate

the feasing routine when we obtain a feasible solution, or when there are no more

blocks to shift. An example in Section 4.4.3 clarifies this concept.

Although our feasing routine helps produce feasible solutions, there are some

caveats. First and foremost, there are some Lagrangian relaxation subproblem so-

lutions that contain constraint violations to such a degree that our feasing routine

cannot correct them. This is especially true as the number of time periods increases

and/or the number of dualized constraints increases. The feasing routine may also

take a long time to execute, especially for large data sets.

Feasing Routine for Maximum Constraints Algorithm

Assumptions We include all the assumptions that we describe with respect to our

model formulation (see Section 3.1).

Definitions

• T = number of time periods in the horizon

• t = time period in which a maximum constraint is violated

• B
eligible
t = the set of all blocks that are on the lowest level (with respect to

the z -axis) of the Lagrangian relaxation subproblem’s optimal solution in time

period t

• klow
t = the z -coordinate of the set B

eligible
t in time period t

• wbest
bt = the variable representing the best block b (i.e., bbest) to remove from the

Lagrangian relaxation subproblem’s optimal solution in time period t for the

current iteration
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Inputs

• Maximum processing capacity per time period (in tons of ore) and maximum

production capacity per time period (in tons of material) – note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized)

• An optimal solution for the Lagrangian relaxation subproblem,
{

wLR
bt

}

• A set of blocks not in the optimal solution for the Lagrangian relaxation sub-

problem,
{

wLR
bt

}

Outputs

• A feasible solution for the monolith based on the current optimal solution from

the Lagrangian relaxation subproblem

Algorithm

For all time periods t = 1...T repeat while the solution is infeasible in the

monolith or until further feasing routine actions cannot be taken, i.e., until

B
eligible
t is empty:

1. Determine B
eligible
t and klow

t for time period t.

2. Determine the best block to remove, wbest
bt :

If any of the following three scenarios occurs:

• the maximum production constraint is violated

• the maximum production constraint is violated by a greater per-

centage than the maximum processing constraint

• the maximum production constraint and the minimum processing

constraint are both violated

Then:
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let wbest
bt = the heaviest block (with respect to weight) of all the

blocks in B
eligible
t that contain the least amount of usable material

in them

If any of the following three scenarios occurs:

• the maximum processing constraint is violated

• the maximum processing constraint is violated by a greater per-

centage than the maximum production constraint

• the maximum processing constraint and the minimum production

constraint are both violated

Then:

let wbest
bt = the heaviest ore block (with respect to usable material)

of all the blocks in B
eligible
t that contain the least amount of total

material in them

3. Set wbest
bt = 0 (i.e., not mined based on the definition of our variables)

4. If t < T then mine block bbest in the next time period (i.e., set wbest
b,t+1 = 1)

5. Ensure that the sixth sequencing constraint is not violated by moving the

block wbest
bt to the next time period.

If the block wbest
bt is alone on level klow

t in time period t (i.e., it has no

neighbors) then it can be moved without violating the sixth sequencing

constraint. Otherwise, check if each one of its plus sign neighbors has

a neighbor. If moving wbest
bt to the next time period isolates any one

of its neighbors, then the isolated neighbor block must also be moved

to the next time period.

6. Check the current solution to ensure it is feasible for the monolith in time

period t, i.e., it satisfies the operational (side) constraints in time period t.

If the solution is feasible, increment t by 1 and return to step 1. Otherwise,

go to step 7.
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7. Update the set B
eligible
t by removing bbest from it, and correspondingly

update klow
t , if applicable. Return to step 2.

If the algorithm produces a feasible solution for the monolith, use this solution

in the monolith to attempt to update its lower bound.

Feasing Routine for Maximum Constraints Numerical Example Using our

two-dimensional example, we employ our feasing routine for maximum constraints to

create a feasible solution for the monolith from an infeasible solution generated by

the Lagrangian relaxation subproblem (see Figure 4.8 below).

Figure 4.8. Feasing Routine for Maximum Constraints Numerical Example. This ex-
ample depicts the idea of using the feasing routine to render an infeasible Lagrangian
relaxation subproblem solution feasible for the monolith by removing the best block
among blocks 18 and 19.

For this example, we assume that:

• Each block contains 10 tons of material (i.e., nb = 10)

• The maximum production constraint is 40 tons per time period

• t = 3 and t < T

• The z -coordinate index runs from 1 at the bottom to 3 at the top of the pit

Recall that our decision variables are defined as wbt, where the b index identifies

the particular block and the t index identifies a time period by which the block is
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extracted. With a maximum production capacity of 40 tons per time period, by

the end of time period 3 at most 120 tons of material can be mined. However, the

diagram above depicts 130 tons of material being mined by the end of time period 3

(all the light grey and dark grey blocks), so the solution to the Lagrangian relaxation

subproblem violates the maximum production constraint in the monolith. We use

the feasing routine to find the best block that is part of the optimal solution to the

Lagrangian relaxation subproblem in time period 3 and remove it from the solution:

1. Determine B
eligible
t and klow

t for time period 3:

B
eligible
3 = {18, 19} and therefore klow

3 = 1.

2. Determine wbest
bt :

Since the maximum production constraint is the only violated constraint, wbest
b,3

represents the heaviest block (with respect to weight) of the the blocks in

B
eligible
3 . For this example, however, each block weighs the same (10 tons),

so we arbitrarily choose block 18 as the best block: wbest
b,3 ⇒ wbest

18,3.

3. Set wbest
bt = 0:

wbest
18,3 = 0

4. If t < T then mine block bbest in the next time period:

Since we assume t < T , then wbest
18,4 = 1.

5. Ensure that the sixth sequencing constraint is not violated by moving wbest
bt to

the next time period:

Moving block 18 to be mined in time period 4 now isolates block 19, so in order

to obey the sixth sequencing constraint, we must move block 19 to be mined in

time period 4 also.

6. Now we have a feasible solution in time period 3. Let t = 4 and return to step

1 (in the case that the solution is infeasible in time period 4 or later).
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After eliminating infeasibilities for time periods 4 through T, we can use the

modified optimal solution to the Lagrangian relaxation subproblem in the monolith

to generate an objective function value (an NPV) and update the lower bound if the

resultant value is greater than the incumbent lower bound.

Feasing Routine for Minimum Constraints Algorithm

Assumptions We again include all the assumptions that we describe with respect

to our model formulation (see Section 3.1).

Definitions

• T = number of time periods in the horizon

• t = time period in which a minimum constraint is violated

• B
eligible
t = the set of all blocks that are on the highest level (with respect to

the z -axis) of the Lagrangian relaxation subproblem’s optimal solution in time

period t

• k
high
t = the z -coordinate of the set B

eligible
t in time period t

• wbest
bt = the variable representing the best block b (i.e., bbest) to add to the

Lagrangian relaxation subproblem’s optimal solution in time period t for the

current iteration

Inputs

• Minimum processing capacity per time period (in tons of ore) and minimum

production capacity per time period (in tons of material) – note that these

capacity constraints must be hard constraints (i.e., they cannot be elasticized)

• An optimal solution for the Lagrangian relaxation subproblem,
{

wLR
bt

}
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• A set of blocks not in the optimal solution for the Lagrangian relaxation sub-

problem,
{

wLR
bt

}

Outputs

• A feasible solution for the monolith based on the current optimal solution from

the Lagrangian relaxation subproblem

Algorithm

For all time periods t = 1...T repeat while the solution is infeasible in the

monolith and there are blocks that can be added to the solution in time period

t (i.e., there are blocks in the data set not mined that can be mined in time

period t based on their earliest start times):

1. Determine B
eligible
t and k

high
t for time period t.

2. Determine the best block to add, wbest
bt :

If any of the following three scenarios occurs:

• the minimum production constraint is violated

• the minimum production constraint is violated by a greater per-

centage than the minimum processing constraint

• the minimum production constraint and the maximum processing

constraint are both violated

Then:

let wbest
bt = the heaviest block (with respect to weight) of all the

blocks in B
eligible
t that contain the least amount of usable material

in them

If any of the following three scenarios occurs:

• the minimum processing constraint is violated
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• the minimum processing constraint is violated by a greater per-

centage than the minimum production constraint

• the minimum processing constraint and the maximum production

constraint are both violated

Then:

let wbest
bt = the heaviest ore block (with respect to usable material)

of all the blocks in B
eligible
t that contain the least amount of total

material in them

3. Set wbest
bt = 1 ∀t = t + 1, . . . , T (i.e., mined based on the definition of our

variables)

4. Ensure that the sixth sequencing constraint is not violated by adding the

block wbest
bt to the optimal solution for time period t.

If adding the block wbest
bt to the optimal solution for time period t

means that the block wbest
bt is alone (i.e., has no plus-sign neighbors)

on level k
high
t , then its addition to the optimal solution violates the

sixth sequencing constraint. To avoid violating the sixth sequencing

constraint when adding wbest
bt to the optimal solution, also add the best

block from among wbest
bt

′s plus-sign neighbors to the optimal solution.

5. Check the current solution to ensure it is feasible for the monolith in time

period t, i.e., it satisfies the operational (side) constraints in time period t.

If the solution is feasible, increment t by 1 and return to step 1. Otherwise,

go to step 6.

6. Update the set B
eligible
t by removing bbest from it, and correspondingly

update klow
t , if applicable. Return to step 2.

If the algorithm produces a feasible solution for the monolith, use this solution

in the monolith to attempt to update its lower bound.

121



Feasing Routine for Minimum Constraints Numerical Example Using our

two-dimensional example, we employ our feasing routine for minimum constraints to

create a feasible solution for the monolith from an infeasible solution generated by

the Lagrangian relaxation subproblem (see Figure 4.9 below).

Figure 4.9. Feasing Routine for Minimum Constraints Numerical Example. This ex-
ample depicts the idea of using the feasing routine to render an infeasible Lagrangian
relaxation subproblem solution feasible for the monolith by adding the best block
among blocks 8, 9, and 14.

For this example, we assume that:

• Each block contains 10 tons of material (i.e., nb = 10)

• All blocks have an earliest start time of t = 1

• The minimum production constraint is 20 tons per time period

• t = 7

• The z -coordinate index runs from 1 at the bottom to 3 at the top of the pit

Recall that our decision variables are defined as wbt, where the b index identifies

the particular block and the t index identifies a time period by which the block is

extracted. With a minimum production capacity of 20 tons per time period, by the

end of time period 7 at least 140 tons of material must be mined. However, the

diagram above depicts 130 tons of material being mined by the end of time period
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7 (the light grey blocks), so the solution to the Lagrangian relaxation subproblem

violates the minimum production constraint in the monolith. We use the feasing

routine to find the best block that is not part of the optimal solution to the Lagrangian

relaxation subproblem in time period 7 and add it to the solution:

1. Determine B
eligible
t and k

high
t for time period 7:

B
eligible
7 = {8, 9, 14} and therefore k

high
7 = 2.

2. Determine wbest
bt :

Since the minimum production constraint is the only violated constraint, wbest
b,7

represents the heaviest block (with respect to weight) of the the blocks in

B
eligible
7 . For this example, however, each block weighs the same (10 tons),

so we arbitrarily chose block 8 as the best block: wbest
b,7 ⇒ wbest

8,7 .

3. Set wbest
bt = 1:

wbest
8,7 = 1

4. Ensure that the sixth sequencing constraint is not violated by adding wbest
bt to

the optimal solution for time period t:

Adding block 8 to the optimal solution in time period 7 means adding an isolated

block, thus violating the sixth sequencing constraint. As a result, we must also

add block 9 to the optimal solution for time period 7 in order to obey the sixth

sequencing constraint.

5. Now we have a feasible solution in time period 7. Let t = 8 and return to step

1 (in the case that the solution is infeasible in time period 8 or later).

After eliminating infeasibilities for time periods 8 through T, we can use the

modified optimal solution to the Lagrangian relaxation subproblem in the monolith

to generate an objective function value (an NPV) and update the lower bound if the

resultant value is greater than the incumbent lower bound.
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Chapter 5

NUMERICAL RESULTS

5.1 Data

To examine the methods and procedures described, we use a master data set

that represents an open pit mine consisting of 19,320 blocks to empirically test our

methodologies. Associated with this data set are minimum and maximum bounds

on the per time period production and processing constraints at the mine. The mine

follows 45◦ sloping rules.

We reduce this 19,320 block data set by an order of magnitude into an envelope

of blocks that contains 1,060 blocks. We create yet another data set two orders of

magnitude smaller called a micro-pit. This micro-pit includes 196 blocks. With such

a small data set, we are able to obtain an optimal solution and graphically investigate

the results.

To further investigate our methodologies, we create two additional data sets from

the master data set. The first of these is a data set containing the 1,980 blocks found

in a 13 by 13 by 12 block subset of the original 19,320 blocks. The second of these

data sets is one containing the 2,880 blocks in an 18 by 17 by 12 block subset of the

original 19,320 blocks. Note that the original 19,320 block data set is not a uniform

cube of blocks, so the subsets we create are also not uniform cubes (this is why

13×13×12 6= 1, 980 and 18×17×12 6= 2, 880). When describing our computational

results, we refer to these various data sets by the number of blocks they contain.

To obtain additional large data sets, we perturb the mineral content of each of the

blocks in the 19,320 block data set by ±5% to create seven additional instances of this

large data set. We refer to these data sets as A, B, C, D, E, F, and G perturbations.
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Lastly, we examine a much more complicated open pit mining model with variable

cut-off grades, stockpiles, and blocks that can be partially mined. We refer to this

data set as Newmont and use it to show how our methodologies work in a more

general setting.

Below is a table of all the various data sets we use and their pertinent charac-

teristics, including the number of time periods in the horizon:

name # blocks # binary variables # constraints # time periods
1,060 1,060 6,360 32,748 6
1,980 1,980 11,880 71,562 6
2,880 2,880 17,280 105,504 6
10,819 10,819 64,914 395,885 6
10,819A 10,819 64,914 395,885 6
10,819B 10,819 64,914 395,885 6
10,819C 10,819 64,914 395,885 6
10,819D 10,819 64,914 395,885 6
10,819E 10,819 64,914 395,885 6
10,819F 10,819 64,914 395,885 6
10,819G 10,819 64,914 395,885 6
Newmont 61 1,391 55,022 25

Table 5.1. Data Sets Used to Empirically Test our Methodologies. This table sum-
marizes the pertinent characteristics of the various data sets we employ to test our
solution methodologies

It is important to note that the Newmont formulation also includes 162,934 continuous

variables.

5.1.1 Data Pre-processing

We find that examining the data we use in our model formulations before actually

running the optimization routines provides some very enlightening insights. Some of

the data we use has many individual datum that we can effectively remove from the

data set without sacrificing optimality in any manner. In practice, using data blindly

without investigating its characteristics can either lead to erroneous results or extra

computation.
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Our largest data set containing 19,320 blocks is 25 blocks wide in the x -coordinate

direction by 26 blocks long in the y-coordinate direction by 60 blocks deep in the z -

coordinate direction (note that the z-coordinate runs from the bottom up, i.e., a lower

number represents a deeper level in the pit). Although a complete block structure

with these dimensions would have 39,000 blocks in it (25 * 26 * 60 = 39,000), this

data set has only half that many blocks indicating that some pre-processing has been

done to eliminate blocks that are not part of the orebody.

Examining the resulting 19,320 blocks even further yields the observation that

there are absolutely no ore blocks on any of the bottom 17 levels of the pit and

therefore no reason to include any of these 5,474 blocks in our data set since they

will never be mined. Because of this, we reduce our 19,320 block data set to a 13,846

block data set. Next, we discover that dispersed throughout the rest of the ore body

are 3,027 phantom blocks which are completely empty (they contain no material

and no mineral content). Removing these blocks leads us to a data set containing

10,819 blocks, thus nearly halving the size of our original 19,320 block data set.

This reduction in the data set pays huge dividends for all our solution methodologies,

especially since integer programming is notoriously plagued by exponential solve times

with respect to the size of problem instance.

5.2 CPLEX Parameter Settings

We use the AMPL programming language, version 2006.06.26 (2006) to formulate

our model. We then enter this formulation into the CPLEX solver, version 10.1

(2006). CPLEX offers many parameter settings that can be altered by the user when

solving mixed integer programming problems. Varying these parameter settings can

dramatically change the problem’s solution time. Unfortunately, there are many

parameters to explore and no one combination of settings works for all problems.

The model’s performance depends on the combination of parameter settings used in

the CPLEX solver. As such, we must either determine the best parameter settings
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for each problem instance or find a set of parameters that works well for different

instances of the same class of problems. The most straightforward way to determine

which parameter settings to use is to try each setting available. However, this quickly

becomes an enormous task. To efficiently discern which parameter settings work

best (including how the various settings interact with each other), we rely on past

programming experience and knowledge of what seems to work well with similarly

formulated problems to investigate those parameters that have generated the most

promising results. Based on the problem being investigated here, the most promising

parameters (and their associated definitions according to the AMPL CPLEX 10.0

User’s Guide by ILOG 2006) are:

• baropt - used to specify the barrier (i.e., interior point) method to solve linear

programming problems

• branch - used to specify a branching direction on the fractional decision variable

value (i.e., strong or weak branching)

• heurfreq - frequency with which CPLEX applies a rounding heuristic at the

nodes

• mipcuts - used to specify the level of aggression CPLEX uses to generate cuts

based on different combinatorial constructs

• mipemphasis - used to guide CPLEX’s branch and cut strategy

• probe - used to determine the amount of solution probing CPLEX conducts

• rinsheur - used to determine how often to apply the relaxation induced neigh-

borhood search heuristic (RINS heuristic)

These seven parameters and their various settings result in 216 different combinations

we explore to discern the best parameter settings. The results are different for each

127



data set used. However some general trends do emerge. The following parameter

settings produce the fastest solution times for the class or problems we investigate:

• monolith without earliest starts, latest starts, or cuts — branch -1 mipcuts -1

mipemphasis 1 probe 1 rinsheur 40

• monolith with earliest starts and latest starts — branch -1 mipcuts -1 mipem-

phasis 1 probe 1 rinsheur 40

• monolith with earliest starts, latest starts, and cuts — mipcuts -1 mipemphasis

1 rinsheur 40

• Lagrangian relaxation procedure — baropt1 branch -1 heurfreq 20 mipemphasis

1 rinsheur 40

The newest version of CPLEX, version 11, has a parameter tuning feature which

intelligently selects the best parameter settings to use for each problem instance.

Future work on this problem would benefit from its use.

5.3 Computational Results

We use a Sun Fire V240 with 2GB of RAM to conduct all computations in

CPLEX. We use an IBM Thinkpad with an Intel 2.13 GHz processor and 2.0 GB of

RAM and a LENOVO desktop with dual core AMD ATHLON64 5000+ processors

and 2.0 GB of RAM to run all earliest starts, latest starts, and cuts algorithms.

5.3.1 Visual Depiction of an Extraction Sequence

As discussed in Section 5.1, we create a micro version of the data to investigate

different aspects of the model. Since the micro-pit is so small, graphing the results

of a two time period problem instance is relatively easy and representing the actual

1Note that the baropt parameter only pertains to the initial LP relaxation. We do not use it to

solve any of the Lagrangian relaxation subproblems.
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three-dimensional pit outlines during each time period is possible (see Figure 5.1

below). This dynamic depiction of how the actual extraction operations occur at the

mine helps mine engineers communicate the schedule to their employees.

Figure 5.1. Visual Depiction of Micro Pit Results. This figure depicts the optimal
solution of a two-period extraction sequence using the micro-pit data.

5.3.2 Computational Results for Earliest Starts, Latest Starts, Cuts, and

the Lagrangian Relaxation Procedure

We use our earliest starts procedure to calculate a complete predecessor list for

each block in the data set and then determine each block’s earliest start time period.

Next, we use our latest starts procedure to calculate a complete holder list for each

block in the data set and then determine each block’s latest start time period. Lastly,

we use these predecessor and holder lists, along with their associated earliest and

latest starts to generate cuts. When generating cuts, we use our reasonable block

selection rule to empirically determine how many blocks to include for the various

types of cuts we generate. Generating cuts involves a degree of judgment and must be

balanced with the amount of time it takes to solve the monolith. Generally speaking,

we aim to generate cuts to such a degree that their generation time is no more than

about 20% of the time it takes to solve the monolith without any earliest or latest
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starts or cuts. We summarize these generation times in Table 5.2 below:

problem instance preds time ES time holders time LS time cuts time
(sec.) (sec.) (sec.) (sec.) (sec.)

1,060 10 3 11 3 62
1,980 14 4 15 4 46
2,880 22 8 24 8 284
10,819 1,059 61 N/A N/A 1,869
10,819A 1,130 65 N/A N/A 1,816
10,819B 1,090 63 N/A N/A 1,834
10,819C 1,128 65 N/A N/A 1,803
10,819D 1,120 64 N/A N/A 1,802
10,819E 1,125 65 N/A N/A 1,798
10,819F 1,305 75 N/A N/A 2,471
10,819G 1,285 74 N/A N/A 2,404
10,819 AVG 1,155 67 N/A N/A 1,975
Newmont ∼ 0 ∼ 0 N/A N/A 4

Table 5.2. Summary of Generation Times for Predecessor Lists, Earliest Starts,
Holder Lists, Latest Starts, and Cuts. This table summarizes the time spent to
generate predecessor lists (preds) and the associated earliest starts (ES ), holder lists
(holders) and the associated latest starts (LS ), and cuts (cuts). All times are in
seconds. The penultimate row in the table (10,819 AVG) presents the average results
for all the 10,819 block data set instances. We do not create holder lists nor latest
starts for the 10,819 data set instances and the Newmont data set.

Looking at Table 5.2, we notice that for our largest data set, on average we

spend one minute to calculate the earliest starts for all 10,819 blocks. We do not

create holder lists nor latest starts for any of the 10,819 data set instances because

empirical evidence shows us that these values are not useful due to the characteristics

of these data sets.

When applying the Lagrangian relaxation procedure, it is important to dualize

the correct constraint(s). Our empirical evidence indicates that dualizing more than

one constraint results in a Lagrangian relaxation subproblem whose optimal decision

variable values are not feasible in the monolith. Additionally, we are not able to

make the optimal solution to the Lagrangian relaxation subproblem feasible with our

feasing routine, rendering the entire Lagrangian relaxation procedure in its current
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implementation ineffective. As such, we conclude that dualizing only one constraint

works best. The actual constraint to dualize is dependent on the nature of the data.

Our results indicate that dualizing the constraints with the most slack in them works

best. However, it is easy to dualize each constraint and then run the Lagrangian

procedure in parallel on four separate machines. The first instance to converge to an

acceptable solution gap indicates which single constraint to dualize.

We use our feasing routine in any iteration that involves a Lagrangian relaxation

subproblem solution that is infeasible in the monolith. Additionally, we conduct our

feasing routine until we either find a feasible solution to the monolith or run out of

blocks with which we can conduct the feasing routine (i.e., if there are no more blocks

to add to or remove from the model, the feasing routine terminates).

Using the by formulation we describe in Section 3.3.2 above, we calculate a

solution within 2% of optimality to determine the extraction sequence for the data

sets presented in Table 5.1 above. We present detailed results in the appendix and a

summary of the execution times in Table 5.3 below.

Examining Table 5.3, it is apparent that our methodologies drastically improve

solution times. We compare the monolith’s solution time (column monolith in Table

5.3) with the solution times of using just earliest and latest starts (column ES & LS

in Table 5.3), earliest and latest starts with cuts (column ES & LS & cuts in Table

5.3), and the Lagrangian relaxation procedure with earliest and latest starts (column

Lagrangian Relaxation with ES & LS in Table 5.3). Overall, using earliest and latest

starts reduces computer solve times by 80.2%. Including cuts with earliest and latest

starts also results in an average solution time reduction of 80.2%. Implementing the

Lagrangian relaxation procedure provides an average reduction of 84.0%.

Taking the size of the data sets into account, we see that the Lagrangian re-

laxation procedure significantly improves solution times for bigger data sets, while

earliest and latest starts with cuts seem to work best with smaller data sets. First

and foremost, none of the eight instances of the 10819 data set solve to 2% mipgap
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problem instance monolith ES & LS ES & LS & cuts Lagrangian
solution solution solution Relaxation
time (sec.) time (sec.) time (sec.) with ES & LS

solution time (sec.)
1,060 1,082 147 82 105
1,980 202 148 95 193
2,880 1,481 366 419 660
10,819 > 24 hrs. 16,326 3,801 708
10,819A > 24 hrs. 1,570 7,803 769
10,819B > 24 hrs. 4,225 29,545 1,261
10,819C > 24 hrs. 3,054 1,570 698
10,819D > 24 hrs. 4,355 1,633 1,075
10,819E > 24 hrs. 1,426 2,794 680
10,819F > 24 hrs. 3,680 7,273 14,159
10,819G > 24 hrs. 838 14,121 3,687
10,819 AVG > 24 hrs. 4,434 8,567 2,880
Newmont 11,476 9,719 8,696 N/A

Table 5.3. Summary of Results from Implementing Earliest Starts, Latest Starts,
Cuts, and the Lagrangian Relaxation Procedure. This table compares the results
(in seconds of CPLEX solve time) of using our algorithms on the various data set
instances. The column labeled monolith represents the raw data. The column labeled
ES & LS is the raw data with earliest and latest starts implemented. The column
labeled ES & LS & cuts depicts the raw data with earliest and latest starts and an
appropriate level of cuts included. Lastly, the column labeled Lagrangian Relaxation
with ES & LS presents the results from implementing the Lagrangian relaxation
procedure on the data set with earliest and latest starts. The penultimate row in
the table (10,819 AVG) presents the average results for all the 10,819 block data set
instances. The structure of the Newmont formulation is different enough from our
model formulation to preclude us from using the Lagrangian relaxation procedure on
it.
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within 24 hours (i.e., 86400 seconds). For these large data sets, we observe that

earliest and latest starts reduce solve times by 94.9%, while adding cuts actually

decreases this time savings to about 90.1%. However, the Lagrangian relaxation pro-

cedure works extremely well, reducing solve times by an average of 96.7%. For six

of the eight 10819 data instances, the Lagrangian relaxation procedure is the fastest

method, reducing solve times by an astonishing 99%.

5.3.3 Comparison of Results with Commercial Software

To gain an appreciation for how well our methodologies work, we compare our

results with those of a commercially available mine scheduling software package, Mi-

neSight Economic Planner – MSEP (2006). MSEP uses the traditional approach

to solve the block sequencing problem, so it first determines the ultimate pit limits

and then generates nested pits and pushbacks which it uses to schedule the block

extraction of the ore body. The software suffers from many limitations, including

1) an inability to specify a time horizon, 2) not being able to include lower bounds

on the operational constraints, and 3) a failure to adhere to upper bounds on the

operational constraints. The software claims to use a dynamic cutoff grade approach,

which theoretically provides a better schedule with respect to maximizing NPV.

We use the 1060, 1980, 2880, and 10819 (original case only) to test MSEP’s

performance. We present the results from using MSEP for these four data instances

in Table 5.4 below: In each instance, the software violates the upper bound on the

production constraint in time period 1. Looking at Table 5.4, these violations are

not trivial, amounting to over a ten-fold increase in required production capacity for

the 10,819 data set instance. Additionally, depending on the data set, the software

arbitrarily chooses a time horizon: 4 time periods for the 1060 data set, 7 time

periods for the 1980 data set, 7 time periods for the 2880 data set, and 10 time

periods for the 10819 data set. Despite using a dynamic cutoff grade, disregarding

maximum production constraints, not adhering to minimum operational constraints,
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and arbitrarily setting a longer time horizon in all but the 1060 block data set, MSEP’s

optimal NPVs are lower for the 1060, 1980, and 2880 block data sets, and only

marginally higher for the 10819 data set. Recall, though, that the 10819 block data

set is run for 10 time periods by MSEP, while ours is only 6 time periods.

The actual algorithm that MSEP uses is a complete mystery. Granted, the soft-

ware runs remarkably quickly (solution times are on the order of 20 seconds or fewer),

but we have absolutely no confidence in the quality of these solutions. The heuris-

tic MSEP employs has serious drawbacks that result in unimplementable extraction

schedules. Specifically, the ten-fold violation of the maximum production constraint

in time period 1 assumes that a certain amount of waste can be removed, i.e., pre-

stripped, during a “pre-production” year. This requires that resources are available

for such an activity. Additionally, there is no indication that the software includes

the cost of conducting this initial work in its NPV calculation.

We are confident in the quality of our solutions. We use deterministic operations

research methods that have withstood the test of time. Our solution times may be

longer, but the resultant block extraction schedule adheres to all operational and

problem our NPV MSEP NPV # time time period 1
instance ($106) ($106) periods production constraint

violation (tons)
1,060 19.0 13.5 4 773,000
1,980 17.5 17.3 7 600,000
2,880 15.5 14.2 7 3,000,000
10,819 9.1 9.8 10 10,500,000

Table 5.4. MSEP’s Results for the 1,060, 1,980, 2,880, and 10,819 Data Set Instances.
This table summarizes the results of implementing the 1,060, 1,980, 2,880, and 10,819
data set instances in MSEP. The column labeled Our NPV shows the NPV we achieve
using the same data set in our monolith MIP formulation. The column labeled MSEP
NPV presents MSEP’s final NPV for the extracted blocks from the pit. The column
labeled # time periods shows how many time periods MSEP uses to calculate its
NPV. The last column shows how many excess tons of production capacity (over the
1,000,000 tons stipulated by the maximum production capacity constraint) MSEP
requires to achieve the NPV it reports.
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geospatial constraints and we have a bound on the solution’s quality. Waiting longer

for a feasible solution is worthwhile.
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Chapter 6

LIMITATIONS, EXTENSIONS, AND CONCLUSION

6.1 Limitations and Extensions

Our model is first and foremost a deterministic model. All inputs are known

with absolute certainty. In real-world mines, this assumption is often not valid, espe-

cially with regard to block characteristics deep underground. To effectively address

the random nature of block content or the value of the ore being removed from the

mine, stochastic programming is a better approach for solving realistic open pit min-

ing problems. As Dimitrakopoulos (1998) shows, the optimal solution to the block

sequencing problem is affected by uncertainties in many of the input parameters such

as: 1) in-situ grade uncertainty, 2) uncertainty in the operational mining specifica-

tions such as production and processing capacities or sloping rules, and 3) economic

uncertainties with respect to operating costs or the value of the mineral being ex-

tracted. In order to address these potential uncertainties, Achireko and Frimpong

(1996) use neural networks to resolve the randomness in block characteristics while

Ramazan and Dimitrakopoulos (2004b) directly address in-situ grade variability in

their model formulation.

Variable cutoff grade models should also be investigated. Such models add an-

other dimension to the decision variables (in the form of a location index (l) indicating

where each block is sent in the optimal solution), but more accurately reflect reality

and handle in-situ ore variability better. However, adding another index significantly

increases the number of decision variables that must be investigated by the model.

The extra problem detail this affords comes at a cost of larger problem size.

There may be ways to generate earliest and latest start times based on the
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minimum or maximum number of blocks that can be removed in a certain time

period. Tighter problem formulations may be achieved using more aggressive cut

generation schemes that investigate larger sets of blocks. A stronger reasonable block

selection rule or quicker cut generation methods would allow us to include more cuts

in the formulation without significantly increasing overall solution time (i.e., the time

spent generating the cuts would not be absorbed by the time saved in using them).

With respect to the Lagrangian relaxation procedure, there are many additional

tactics that may be employed. Nemhauser and Wolsey (1988) provide some alter-

natives to the subgradient method for multiplier updating. Among these alternative

methods is one that uses a constraint generation idea which could also lead to the

introduction of more cuts via cutting planes, thus further tightening the formulation.

Additionally, the use of the interior point method for the solution of the LP relax-

ation of the monolith or for any other linear programs may provide solutions with a

different and promising algebraic structure.

The feasing routine we create may also be improved. Determining how long to

conduct the feasing routine and how often (with respect to iteration count) it should

be used are items warranting further investigation. The feasing routine might only

be applied every n iterations, or only if the Lagrangian relaxation solution is not “too

infeasible” based on both the number of constraints violated in the monolith and the

extent to which these violations occur. Lastly, placing a limit on the amount of time

spent conducting the feasing routine may preclude using it for excessive amounts of

time with little or no success.

A completely different feasing routine based on something other than manually

adding or removing blocks from the Lagrangian relaxation subproblem solution may

also be worth examining. One such feasing routine may be to find the first time

period with a constraint violation and impose the violated constraint as a hard con-

straint, then resolve the Lagrangian relaxation subproblem and check if these new

decision variable values are now feasible in the monolith, imposing the violated con-
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straint as another hard constraint if the solution is not feasible in the monolith. Such

an incremental approach, however, may take a long time to implement because we

must resolve the Lagrangian relaxation subproblem after each constraint is added.

Ultimately, any routine that endeavors to render feasible those Lagrangian relaxation

subproblems that are infeasible in the monolith must allow the Lagrangian relaxation

procedure to converge to within an acceptable margin of error faster than solving the

monolith outright.

Aggregating time periods or blocks to determine strategic mine schedules may

also be useful. Other relaxation and decomposition techniques, such Dantzig-Wolfe

decomposition and column generation methods, may provide fruitful results.

Additional research to reduce solution times should focus on methods to either

limit the number of variables in the problem or methods that do not necessitate the

use of branch-and-bound algorithms to solve MIP problem instances. Heuristics based

on genetic algorithms or artificial neural networks may provide better solution times.

Regardless of the methodology used, any procedure that can reduce the solu-

tion time required to determine the efficient block extraction schedule is of benefit to

mine engineers in their quest to efficiently sequence the extraction of profitable ma-

terial from their mines. The alternative is to either suffer with slow algorithms and

long solution times, or use intuition to guess the best extraction schedule. Neither

alternative is attractive for the complex mines that we see in the world today.

6.2 Conclusion

Efficiently scheduling the extraction of ore from an open pit mine helps ensure

that the mine maximizes the net present value of the minerals in the orebody. Solving

the block sequencing problem results in a time-indexed schedule of when any given

block in the orebody should be removed (if it is removed at all) that maximizes the

NPV of the ore in the pit subject to all sequencing and operational constraints.

Mine planners use two approaches to solving the block sequencing problem: one
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based on the ultimate pit limits and another based on a comprehensive approach.

The former divides the process into three separate stages that are solved sequentially,

while the later takes a global view of the problem. Although more difficult to solve,

the comprehensive approach provides more flexibility and ultimately creates a better

schedule. In our research, we pursue solving the block sequencing problem using this

approach. We propose various methodologies that make the problem more tractable.

We limit the solution space by defining decision variables only between their earliest

and latest possible start times. We present a series of cut generation algorithms that

produce valid and useful cuts to tighten the problem formulation. Lastly, we employ a

Lagrangian relaxation technique with a feasing routine to make infeasible Lagrangian

relaxation subproblem solutions feasible for the monolith.

Employing our methodologies significantly reduces solve times while not com-

promising the optimal solution. Although our earliest starts idea appears in the

literature, no one employs a latest starts idea in open pit mining. Our cuts are

much more aggressive. The Lagrangian relaxation procedure we use does not require

soft constraints, but instead uses our feasing routine to ensure feasible Lagrangian

relaxation subproblem solutions for the monolith.

The techniques we present: 1) earliest and latest starts, 2) cuts, and 3) La-

grangian relaxation, serve as tools to expedite solution times for the block sequencing

problem. Just like any handyman knows, one tool is never sufficient for all jobs. In

the same vein, our three tools complement each other and serve as different techniques

to aid in arriving at solutions to the block sequencing problem. Our empirical results

show that using our tools reduces solve times by well over 95% without sacrificing any

confidence in the answers achieved. In today’s finicky commodities markets, being

able to adapt to changing market conditions and incorporate the latest mine-specific

data to update operating schedules is paramount to ensure a profitable mining ven-

ture.
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APPENDIX A

The following tables present detailed results of employing our solution method-

ologies. Each table compares our techniques with the solution time if none of our

techniques is used. The monolith column presents the results using the raw data

with no modifications. The ES & LS column shows the results using the raw data

with earliest and latest starts implemented. The ES & LS & cuts column depicts

the raw data with earliest and latest starts and an appropriate level of cuts included.

Lastly, the column labeled Lagrangian Relaxation with ES & LS presents the results

from implementing the Lagrangian relaxation procedure on the data set with earliest

and latest starts. Each table represents a separate data set, so we show each of the

twelve data sets depicted in Table 5.1.

monolith ES & LS ES & LS Lagrangian Relaxation
& cuts with ES & LS

# cuts 0 0 7,039 0
cut generation time (sec.) 0 0 62 0
# binary variables 6,360 5,025 5,025 5,025
# constraints 31,688 23,801 30,840 23,795
MIP simplex iterations 81,449 27,691 18,796 13,417
branch-and-bound nodes 360 120 60 0
computer time (sec.) 1,082 147 82 105
NPV ($106) 19.0 19.0 19.1 18.8

Table A.1. Detailed Results for the 1,060 Data Set. This table shows the detailed
results for the data set called 1,060.
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monolith ES & LS ES & LS Lagrangian Relaxation
& cuts with ES & LS

# cuts 0 0 3,846 0
cut generation time (sec.) 0 0 46 0
# binary variables 11,880 9,975 9,975 9,975
# constraints 69,582 56,915 60,761 56,909
MIP simplex iterations 33,905 32,743 34,112 26,540
branch-and-bound nodes 30 40 40 0
computer time (sec.) 202 148 95 193
NPV ($106) 17.5 17.6 17.6 17.2

Table A.2. Detailed Results for the 1,980 Data Set. This table shows the detailed
results for the data set called 1,980.

monolith ES & LS ES & LS Lagrangian Relaxation
& cuts with ES & LS

# cuts 0 0 31,643 0
cut generation time (sec.) 0 0 284 0
# binary variables 17,280 14,367 14,367 14,367
# constraints 102,624 83,062 114,705 83,056
MIP simplex iterations 85,855 44,196 40,082 81,285
branch-and-bound nodes 50 80 60 0
computer time (sec.) 1,481 366 419 660
NPV ($106) 15.5 15.6 15.6 15.2

Table A.3. Detailed Results for the 2,880 Data Set. This table shows the detailed
results for the data set called 2,880.

monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,869 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 413,871 308,443 108,396 55,726
branch-and-bound nodes 100 570 280 0
computer time (sec.) 86,423 16,326 3,801 708
NPV ($106) 9.1 9.2 9.2 9.1

Table A.4. Detailed Results for the 10,819 Data Set. This table shows the detailed
results for the data set called 10,819.
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monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,816 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 433,789 78,494 183,408 55,126
branch-and-bound nodes 131 120 440 0
computer time (sec.) 86,420 1,570 7,803 769
NPV ($106) 9.3 9.3 9.3 9.1

Table A.5. Detailed Results for the 10,819A Data Set. This table shows the detailed
results for the data set called 10,819A.

monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,834 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 462,669 142,060 364,104 64,334
branch-and-bound nodes 80 360 220 40
computer time (sec.) 86,424 4,225 29,545 1,261
NPV ($106) 9.1 9.2 9.2 9.1

Table A.6. Detailed Results for the 10,819B Data Set. This table shows the detailed
results for the data set called 10,819B.

monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,803 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 408,893 97,302 69,579 27,556
branch-and-bound nodes 139 320 200 0
computer time (sec.) 86,424 3,054 1,570 698
NPV ($106) 9.1 9.2 9.2 9.0

Table A.7. Detailed Results for the 10,819C Data Set. This table shows the detailed
results for the data set called 10,819C.
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monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,802 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 444,515 150,695 64,345 60,883
branch-and-bound nodes 95 420 168 25
computer time (sec.) 86,422 4,355 1,633 1,075
NPV ($106) 9.2 9.2 9.2 9.0

Table A.8. Detailed Results for the 10,819D Data Set. This table shows the detailed
results for the data set called 10,819D.

monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 1,798 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 482,587 69,267 89,042 53,875
branch-and-bound nodes 100 217 200 0
computer time (sec.) 86,437 1,426 2,794 680
NPV ($106) 9.0 9.1 9.2 9.0

Table A.9. Detailed Results for the 10,819E Data Set. This table shows the detailed
results for the data set called 10,819E.

monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 2,471 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 475,860 118,917 166,627 230,153
branch-and-bound nodes 95 320 320 516
computer time (sec.) 86,421 3,680 7,273 14,159
NPV ($106) N/A 9.3 9.3 9.1

Table A.10. Detailed Results for the 10,819F Data Set. This table shows the detailed
results for the data set called 10,819F.
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monolith ES ES & cuts Lagrangian Relaxation
with ES

# cuts 0 0 19,223 0
cut generation time (sec.) 0 0 2,471 0
# binary variables 64,914 20,969 20,969 20,969
# constraints 395,885 117,038 136,261 117,032
MIP simplex iterations 446,595 56,542 197,578 81,726
branch-and-bound nodes 89 103 149 40
computer time (sec.) 86,431 838 14,121 3,687
NPV ($106) 9.1 9.2 9.3 9.1

Table A.11. Detailed Results for the 10,819G Data Set. This table shows the detailed
results for the data set called 10,819G.

monolith ES ES & cuts
# cuts 0 0 2,010
cut generation time (sec.) 0 0 4
# binary variables 1,391 1,266 1,266
# linear variables 79,572 79,572 79,572
# constraints 31,929 31,097 32,950
MIP simplex iterations 441,279 365,085 356,262
branch-and-bound nodes 903 695 830
computer time (sec.) 11,476 9,719 8,696
NPV ($106) 2.4 2.4 2.4

Table A.12. Detailed Results for the Newmont Data Set. This table shows the
detailed results for the data set called Newmont.
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